Abstract: The present application relates to a nucleic acid molecule having a nucleotide sequence encoding a bifunctional polypeptide comprising the DNA-binding domain of a protein belonging to the family of Methyl-CpG binding proteins (MBDs) and the Fc portion of an antibody. In addition, vectors and host cells which comprise said nucleic acid molecule and polypeptides which are encoded by said nucleic acid molecule as well as processes for producing said polypeptide are disclosed. Moreover, the present application provides an antibody specifically binding said polypeptide and compositions, in particular diagnostic compositions comprising the nucleic acid molecule(s), vector(s), host cell(s), polypeptide(s) or antibodie(s) of the present application. Furthermore, methods and uses employing the polypeptides of the present invention for detecting methylated DNA, in particular in tumorous tissue or tumor cells are provided.
Abstract: Provided herein are methods, processes and apparatuses for non-invasive assessment of genetic variations that make use of nucleic acid fragments from circulating cell free nucleic acid. Also provided herein are methods for partitioning one or more genomic regions of a reference genome into a plurality of portions according to one or more features.
Abstract: Provided in part herein are methods and processes that can be used for non-invasive assessment of a genetic variation which can lead to diagnosis of a particular medical condition or conditions. Such methods and processes can, for example, identify dissimilarities or similarities for one or more features between a subject data set and a reference data set, generate a multidimensional matrix, reduce the matrix into a representation and classify the representation into one or more groups. Methods and processes described herein are applicable to data in biotechnology and other fields.
Abstract: A method and system for analyzing circulating cell-free nucleic acids from a pregnant female with reduced bias, Counts of sequence reads mapped to portions of a reference genome are obtained. A regression model is generated that models the relationship between the counts and the GC content. The read counts are normalized according to the regression model to remove the GC bias. The normalized counts are used for further analysis, such as the detection of fetal aneuploidy.
Abstract: Provided herein are methods, processes and apparatuses for non-invasive assessment of genetic variations that make use of nucleic acid fragments from circulating cell free nucleic acid. Also provided herein are methods for partitioning one or more genomic regions of a reference genome into a plurality of portions according to one or more features.
Abstract: Improved solid supports and methods for analyzing target nucleotide sequences are provided herein. Certain improvements are directed to efficiently preparing nucleic acids that comprise nucleotide sequences identical to or substantially identical to one or more target nucleotide sequences, or complement thereof. The prepared nucleic acids include a reference sequence that facilitates sequence analysis. The solid supports and methods provided herein minimize the number of steps required by published sequence analysis methodologies, and thereby offer improved sequence analysis efficiency.
Abstract: Provided herein are methods and compositions to extract and enrich by, physical separation or amplification, relatively short nucleic acids from a nucleic acid composition containing a high background of longer nucleic acids (e.g., host or maternal nucleic acids; genomic nucleic acid and the like).
Type:
Grant
Filed:
July 17, 2018
Date of Patent:
December 8, 2020
Assignee:
Sequenom, Inc.
Inventors:
Michele Elizabeth Wisniewski, William Hang Kwong, Firouz Mohsenian, Jian-Hua Ding
Abstract: Provided are compositions and processes that utilize genomic regions differentially methylated between a mother and her fetus to separate, isolate or enrich fetal nucleic acid from a maternal sample. The compositions and processes described herein are useful for non-invasive prenatal diagnostics, including the detection of chromosomal aneuploidies.
Type:
Application
Filed:
June 29, 2020
Publication date:
November 19, 2020
Applicant:
Sequenom, Inc.
Inventors:
Mathias Ehrich, Anders Olof Herman Nygren
Abstract: Provided are compositions and processes that utilize genomic regions differentially methylated between a mother and her fetus to separate, isolate or enrich fetal nucleic acid from a maternal sample. The compositions and processes described herein are useful for non-invasive prenatal diagnostics, including the detection of chromosomal aneuploidies.
Type:
Grant
Filed:
June 10, 2015
Date of Patent:
August 11, 2020
Assignee:
Sequenom, Inc.
Inventors:
Mathias Ehrich, Anders Olof Herman Nygren
Abstract: Improved solid supports and methods for analyzing target nucleotide sequences are provided herein. Certain improvements are directed to efficiently preparing nucleic acids that comprise nucleotide sequences identical to or substantially identical to one or more target nucleotide sequences, or complement thereof. The prepared nucleic acids include a reference sequence that facilitates sequence analysis. The solid supports and methods provided herein minimize the number of steps required by published sequence analysis methodologies, and thereby offer improved sequence analysis efficiency.
Abstract: Provided herein are compositions and methods for analysis of nucleic acids, including, methods and compositions for genotyping, haplotyping, sequencing and performing other genetic and epigenetic analyses on nucleic acids, for example. In some embodiments, methods and compositions suitable for whole-genome sequencing on single molecules of nucleic acid are provided. In some embodiments, analysis of single molecules of nucleic acid are performed in conjunction with nanopores and/or nanopore devices.
Abstract: Described herein are products and processes for nucleic acid quantification, which are in part useful for detecting and determining the nucleotide sequence of rare nucleic acids (i.e., low copy number nucleic acids) in a sample. Such products and processes are useful for reducing the dynamic range among different nucleic acid species.
Abstract: Provided are compositions and processes that utilize genomic regions that are differentially methylated between a mother and her fetus to separate, isolate or enrich fetal nucleic acid from a maternal sample. The compositions and processes described herein are particularly useful for non-invasive prenatal diagnostics, including the detection of chromosomal aneuploidies.
Type:
Application
Filed:
March 17, 2020
Publication date:
July 2, 2020
Applicant:
Sequenom, Inc.
Inventors:
Mathias Ehrich, Anders Olof Herman Nygren, Taylor Jacob Jensen
Abstract: Provided herein are methods, processes and apparatuses for non-invasive assessment of genetic variations that make use of decision analyses. The decision analyses sometimes include segmentation analyses and/or odds ratio analyses.
Type:
Grant
Filed:
May 23, 2014
Date of Patent:
June 30, 2020
Assignee:
Sequenom, Inc.
Inventors:
Chen Zhao, Zeljko Dzakula, Cosmin Deciu, Sung Kyun Kim, Amin R. Mazloom, Gregory Hannum, Mathias Ehrich
Abstract: Provided herein are methods, compositions and kits to extract and relatively enrich by physical separation or amplification short base pair nucleic acid in the presence of a high background of genomic material (e.g., host or maternal nucleic acids).
Type:
Grant
Filed:
August 18, 2016
Date of Patent:
May 26, 2020
Assignee:
SEQUENOM, INC.
Inventors:
Carolyn R. Hoyal-Wrightson, Andreas Braun, Karsten E. Schmidt