Patents Assigned to Silanna Asia Pte Ltd
  • Publication number: 20190319445
    Abstract: Embodiments of the disclosure include a switch having an on-state resistance that varies based on a temperature coefficient of the switch and an overcurrent protection circuit coupled to the switch and having an adjustable overcurrent threshold level determined based on an adjustable voltage generated by the overcurrent protection circuit, the adjustable voltage generated based on the temperature coefficient of the switch.
    Type: Application
    Filed: October 1, 2018
    Publication date: October 17, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Guanghua Ye
  • Publication number: 20190319097
    Abstract: A lateral transistor tile is formed with first and second collector regions that longitudinally span first and second sides of the transistor tile; and a base region and an emitter region that are between the first and second collector regions and are both centered on a longitudinal midline of the transistor tile. A base-collector current, a collector-emitter current, and a base-emitter current flow horizontally; and the direction of the base-emitter current is perpendicular to the direction of the base-collector current and the collector-emitter current. Lateral BJT transistors having a variety of layouts are formed from a plurality of the tiles and share common components thereof.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 17, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventors: Vadim Kushner, Nima Beikae
  • Patent number: 10446687
    Abstract: A semiconductor package includes a leadframe, having perimeter package leads and a ground voltage lead, a bottom semiconductor die flip-chip mounted to the leadframe, and a top semiconductor die. The bottom semiconductor die has a first frontside active layer with first frontside electrical contacts electrically connected to the leadframe, a first backside portion, and a buried oxide layer situated between the first frontside active layer and the first backside portion. The top semiconductor die is mounted to the first backside portion. The first frontside active layer includes a circuit electrically connected to the first backside portion by a backside electrical connection through the buried oxide layer. The first backside portion of the bottom semiconductor die is electrically connected to the ground voltage lead through a first electrical contact of the first frontside electrical contacts to minimize crosstalk.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: October 15, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventors: Shanghui Larry Tu, Michael A. Stuber, Befruz Tasbas, Stuart B. Molin, Raymond Jiang
  • Publication number: 20190312139
    Abstract: A semiconductor device includes an active region formed over a substrate. The active region includes a FET and a diode. The FET includes one or more FET fingers. Each FET finger includes a FET source region, a FET drain region, and a lateral FET gate electrode. The diode includes one or more diode fingers. Each of the diode fingers includes a diode anode region electrically coupled to the FET source region, a diode cathode region electrically coupled to the FET drain region, and a lateral diode gate electrode electrically coupled to the diode anode region and electrically isolated from the lateral FET gate electrode. The FET fingers are active fingers of the semiconductor device and the diode fingers are dummy fingers of the semiconductor device. The diode is configured to clamp a maximum voltage developed across the FET drain region and the FET source region.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 10, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventors: Shanghui Larry Tu, Vadim Kushner, Eric Vann
  • Patent number: 10439499
    Abstract: A switch-mode power supply controller controls a circuit that includes a flyback-based, switch-mode power supply in the context of an input voltage source, a USB Type-C PD controller and an output load. The switch-mode power supply controller may be configured to estimate input voltage based on a measured magnetizing inductance discharge time. Furthermore, the switch-mode power supply controller may be configured to estimate output voltage based on the measured magnetizing inductance discharge time and the estimated input voltage. Still further, the estimated voltages may be used by the switch-mode power supply controller to limit certain currents and optimize power efficiency. Even further, the estimated and measured value may be employed by the switch-mode power supply controller to estimate and indicate brownout conditions.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: October 8, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventors: Aleksandar Radic, Seyed-Behzad Mahdavikhah-Mehrabad
  • Patent number: 10424661
    Abstract: A semiconductor device includes an active region formed over a substrate. The active region includes a FET and a diode. The FET includes one or more FET fingers. Each FET finger includes a FET source region, a FET drain region, and a lateral FET gate electrode. The diode includes one or more diode fingers. Each of the diode fingers includes a diode anode region electrically coupled to the FET source region, a diode cathode region electrically coupled to the FET drain region, and a lateral diode gate electrode electrically coupled to the diode anode region and electrically isolated from the lateral FET gate electrode. The FET fingers are active fingers of the semiconductor device and the diode fingers are dummy fingers of the semiconductor device. The diode is configured to clamp a maximum voltage developed across the FET drain region and the FET source region.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: September 24, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventors: Shanghui Larry Tu, Vadim Kushner, Eric Vann
  • Patent number: 10424666
    Abstract: A semiconductor package includes a leadframe having perimeter package leads and electrical connectors, a single semiconductor die having a back-side electrical contact and front-side electrical contacts, an electrically conductive clip (“clip”), and a top semiconductor die having a frontside and a backside. The single semiconductor die includes two or more transistors. Two or more of the front-side electrical contacts of the semiconductor die are electrically coupled to and physically mounted to respective electrical contacts of the leadframe. An electrical contact surface of the clip is electrically coupled to and physically mounted to an electrical connector of the leadframe. Another electrical contact surface of the clip is physically mounted to and electrically coupled to the back-side electrical contact of the semiconductor die. The backside of the top semiconductor die is physically mounted to yet another surface of the electrically conductive clip.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: September 24, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventors: Shanghui Larry Tu, Michael A. Stuber, Befruz Tasbas, Stuart B. Molin, Raymond Jiang
  • Patent number: 10418902
    Abstract: An improved power converter produces power through a power switch in response to an activation signal that has an on-time and a switching frequency. An on-time signal has a constant on-time and controls the on-time of the activation signal. An error signal indicates that the switching frequency is not equal to a reference frequency. A step up signal and a step down signal are based on the error signal. A count signal is increased in response to the step up signal and decreased in response to the step down signal. An on-time pulse has a duration that is related to a value of the count signal. The on-time pulse controls the constant on-time of the on-time signal and maintains the switching frequency at about the reference frequency.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: September 17, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventors: Rawinder Dharmalinggam, Tiong Lim
  • Patent number: 10418912
    Abstract: A power converter includes an input side to receive an input voltage, and an output side to provide an output voltage, a main switch, a controller, a transformer having a primary winding that couples the main switch to the input side, an active clamp switch coupled to the input side by an active clamp capacitor, and an active clamp controller circuit. The active clamp controller circuit includes a sampling circuit to generate a sampled main switch voltage, a delay circuit to generate a delayed sampled main switch voltage, a voltage comparison circuit, and an active clamp switch control circuit configured to i) enable the active clamp switch based on a first comparison between the sampled main switch voltage and the delayed sampled main switch voltage, and ii) disable the active clamp switch based on a second comparison between the sampled main switch voltage and the delayed sampled main switch voltage.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: September 17, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Publication number: 20190260297
    Abstract: The anti-windup circuit generally has a voltage clamping device in series with a current limiting device operatively connectable to the output current path of a feedback compensator; the feedback compensator being part of a switch-mode power supply (SMPS) having an input voltage source and a load and generating constrained control values required to generate control on-off actions for tight power regulation. The inclusion of the disclosed anti-windup circuit in an SMPS may lead to hardware based overvoltage protection, reduced overall size and faster response to load changes.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Publication number: 20190252966
    Abstract: A power converter controller includes a fractional valley controller configured to determine a target number of valleys of a resonant waveform at a drain node of a main switch, the target number of valleys corresponding to a desired off-time of the main switch, the fractional valley controller modulating an off-time of the main switch between two or more modulated off-times. The target number of valleys corresponds to a non-integer number of valleys of the resonant waveform at the drain node of the main switch. Each of the modulated off-times of the main switch corresponds to an integer number of valleys, and the two or more modulated off-times of the main switch has an average value that corresponds to the desired off-time.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 15, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Publication number: 20190252985
    Abstract: A switched-mode power controller includes a primary side controller circuit configured in a startup mode of operation to generate a fixed switching frequency pulse width modulation (PWM) signal with incrementing duty-ratio value. The PWM signal drives a main-switch that charges an inductive device with stored energy and discharges the stored energy into a capacitor on a secondary side to generate a power controller output voltage. Based on a comparison of the power controller output voltage with a reference voltage, the primary side controller circuit is configured to stop the incrementing of the duty-ratio of the PWM signal and begin a quasi-resonant mode of operation during which the primary side controller circuit reduces a number of valleys detected in one or more off-times of the main-switch in one or more respective main-switch switching periods.
    Type: Application
    Filed: September 28, 2018
    Publication date: August 15, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Patent number: 10381457
    Abstract: Various methods and devices that involve body contacted transistors are disclosed. An exemplary method comprises forming a gate on a planar surface of a semiconductor wafer. The gate covers a channel of a first conductivity type that is opposite to a second conductivity type. The method also comprises implanting a body dose of dopants on a source side of the gate using the gate to mask the body dose of dopants. The body dose of dopants spreads underneath the channel to form a deep well. The body dose of dopants has the first conductivity type. The method also comprises implanting, subsequent to implanting the body dose of dopants, a source dose of dopants on the source side of the gate to form a source. The method also comprises forming a source contact that is in contact with the deep well at the planar surface of the semiconductor wafer.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: August 13, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventor: George Imthurn
  • Patent number: 10381936
    Abstract: The flyback converter generally has a capacitive divider operatively connectable to a voltage source for receiving an input voltage, the capacitive divider having a plurality of capacitive devices connected in series from one another; a transformer having a plurality of primary windings inductively coupled to at least one secondary winding, each one of the primary windings of the transformer being connected in parallel to a corresponding one of the capacitive devices of the capacitive divider via a switching device, each of the at least one secondary winding being connected to a forwardly biased and capacitive circuit connectable to an output load; and a controller connected to each one of the switching devices for operating the flyback converter to power the output load with the voltage source.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: August 13, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventors: Sheikh Mohammad Ahsanuzzaman, Seyed-Behzad Mahdavikhah-Mehrabad, Aleksandar Radic, Aleksandar Prodic
  • Publication number: 20190245034
    Abstract: A semiconductor structure for facilitating an integration of power devices on a common substrate includes a first insulating layer formed on the substrate and an active region having a first conductivity type formed on at least a portion of the first insulating layer. A first terminal is formed on an upper surface of the structure and electrically connects with at least one other region having the first conductivity type formed in the active region. A buried well having a second conductivity type is formed in the active region and is coupled with a second terminal formed on the upper surface of the structure. The buried well and the active region form a clamping diode which positions a breakdown avalanche region between the buried well and the first terminal. A breakdown voltage of at least one of the power devices is a function of characteristics of the buried well.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventors: Jacek Korec, Boyi Yang
  • Publication number: 20190245453
    Abstract: An active clamp circuit includes an active clamp capacitor coupled in series with an active clamp switch and an active clamp controller circuit to receive an active clamp switch current that passes through the active clamp switch and to control the active clamp switch based on the received active clamp switch current. The active clamp controller circuit is configured to enable the active clamp switch based on a first amplitude comparison, the first amplitude comparison being based on the active clamp switch current. The active clamp controller circuit is configured to disable the active clamp switch based on a second amplitude comparison and a third amplitude comparison, the second amplitude comparison and the third amplitude comparison being based on the active clamp switch current.
    Type: Application
    Filed: September 28, 2018
    Publication date: August 8, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Publication number: 20190238056
    Abstract: Various methods and devices that involve control circuits for power converters are disclosed. One method comprises controlling a switch using a control signal based on a comparison signal. The switch controls a transfer of power between an input node, which receives an input, and an output node. The method comprises measuring an output of the power converter, generating an error signal based on the output, generating a periodic ramp signal with a varying period, providing the error signal to a first input terminal of a comparator, providing the ramp signal to a second input terminal of the comparator, and generating the comparison signal based on the error signal and the ramp signal using the comparator. The method comprises increasing a slope of the ramp signal in response to an increase in the input, and increasing the slope of the ramp signal in response to a decrease in the varying period.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Trevor M. Newlin
  • Patent number: 10355688
    Abstract: A circuit for regenerative gate charging includes an inductor coupled to a gate of a FET. An output control circuit is coupled to a timing control circuit and a bridged inductor driver, which is coupled to the inductor. A sense circuit is coupled to the gate and to the timing control circuit, which receives a control signal, generates output control signals in accordance with a first switch timing profile, and transmits the output control signals to the output control circuit. In accordance with the first switch timing profile, the output control circuit holds switches of the bridged inductor driver in an ON state for a first period and holds all of the switches in an OFF state for a second period. Gate voltages are sampled during the second period and after the first period. The timing control circuit generates a second switch timing profile using the sampled voltages.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: July 16, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventors: Cameron Brown, Yashodhan Vijay Moghe
  • Publication number: 20190199227
    Abstract: A power converter includes an input side to receive an input voltage, and an output side to provide an output voltage, a main switch, a controller, a transformer having a primary winding that couples the main switch to the input side, an active clamp switch coupled to the input side by an active clamp capacitor, and an active clamp controller circuit. The active clamp controller circuit includes a sampling circuit to generate a sampled main switch voltage, a delay circuit to generate a delayed sampled main switch voltage, a voltage comparison circuit, and an active clamp switch control circuit configured to i) enable the active clamp switch based on a first comparison between the sampled main switch voltage and the delayed sampled main switch voltage, and ii) disable the active clamp switch based on a second comparison between the sampled main switch voltage and the delayed sampled main switch voltage.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 27, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Publication number: 20190173465
    Abstract: A circuit for regenerative gate charging includes an inductor coupled to a gate of a FET. An output control circuit is coupled to a timing control circuit and a bridged inductor driver, which is coupled to the inductor. A sense circuit is coupled to the gate and to the timing control circuit, which receives a control signal, generates output control signals in accordance with a first switch timing profile, and transmits the output control signals to the output control circuit. In accordance with the first switch timing profile, the output control circuit holds switches of the bridged inductor driver in an ON state for a first period and holds all of the switches in an OFF state for a second period. Gate voltages are sampled during the second period and after the first period. The timing control circuit generates a second switch timing profile using the sampled voltages.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 6, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventors: Cameron Brown, Yashodhan Vijay Moghe