Abstract: A current control circuit can include: a current detection circuit configured to obtain a current detection signal for characterizing an output current of a switched capacitor converter, where the switched capacitor converter includes a plurality of first switch groups coupled between an input terminal and a ground, and where each first switch group comprises two switches coupled in series; and a voltage regulation circuit configured to regulate the output current by adjusting an equivalent impedance of the switched capacitor converter in accordance with the current detection signal.
Abstract: In one embodiment, method of making a high voltage PMOS (HVPMOS) transistor, can include: (i) providing a P-type substrate; (ii) implanting N-type dopants in the P-type substrate; (iii) dispersing the implanted N-type dopants in the P-type substrate to form a deep N-type well; (iv) implanting P-type dopants of different doping concentrations in the deep N-type well along a horizontal direction of the deep N-type well; and (v) dispersing the implanted P-type dopants to form a composite drift region having an increasing doping concentration and an increasing junction depth along the horizontal direction of the deep N-type well.
Abstract: A laterally diffused metal oxide semiconductor device can include: a base layer; a source region and a drain region located in the base layer; a first dielectric layer located on a top surface of the base layer and adjacent to the source region; a voltage withstanding layer located on the top surface of the base layer and located between the first dielectric layer and the drain region; a first conductor at least partially located on the first dielectric layer; a second conductor at least partially located on the voltage withstanding layer; and a source electrode electrically connected to the source region, where the first and second conductors are spatially isolated, and the source electrode at least covers a space between the first and second conductors.
Abstract: An LED dimming control circuit can include: a detection circuit configured to receive a dimming control signal, and to generate a detection signal for characterizing a type of the dimming control signal; and a dimming signal generation circuit configured to generate a dimming signal according to the detection signal and the dimming control signal, where a duty cycle of the dimming signal corresponds to the dimming control signal. A dimming control method can include: receiving a dimming control signal; detecting a number of rising or falling edges of the dimming control signal within a period of time to generate a detection signal; and determining a type of the dimming control signal in accordance with the detection signal.
Abstract: An apparatus for photovoltaic power generation can include: an inverter; and at least one photovoltaic optimizer, where input terminals of each photovoltaic optimizer are coupled to output terminals of a photovoltaic panel, and output terminals of each photovoltaic optimizer are coupled in series with each other between input terminals of the inverter; where a maximum power point of the photovoltaic panel is tracked in accordance with an input voltage of the inverter when the photovoltaic optimizer operates in a first mode; and the maximum power point of the photovoltaic panel is tracked in accordance with an output voltage of the photovoltaic panel when the photovoltaic optimizer operates in a second mode.
Abstract: An AC-DC power converter can include: a front-stage power circuit; a rear-stage power circuit configured to share one power switch as a main power switch with the front-stage power circuit, where the rear-stage power circuit is coupled to a load, and a first magnetic component of the front-stage power circuit and a second magnetic component of the rear-stage power circuit are not coupled in one conductive loop from a positive terminal of a DC input voltage to a negative terminal of the DC input voltage; and an energy storage capacitor coupled to the front-stage power circuit and the rear-stage power circuit, where a common node of the first and second magnetic components is directly coupled to the power switch.
Abstract: A method of controlling a photovoltaic power system, can include: controlling a first current flowing through a connection line between an output terminal of a power conversion circuit and an input terminal of an inversion circuit according to a rapid shutdown signal; and controlling operation states of the power conversion circuit coupled to a photovoltaic panel in accordance with the first current, such that a voltage on the connection line meets preset requirements. A photovoltaic power system can include: an inversion circuit configured to be controlled to regulate a first current of an input line of the inversion circuit; and at least one power conversion circuit coupled in series with the input line, and being configured to transition among different operation states according to the first current.
Abstract: A semiconductor device structure can include: (i) a first semiconductor layer having dopants of a first type; (ii) a second semiconductor layer having the dopants of the first type on the first semiconductor layer, where the second semiconductor layer is lightly-doped relative to the first semiconductor layer; (iii) first and second column regions spaced from each other in the second semiconductor layer, where the second column region is arranged between two of the first column regions; and (iv) first and second first sub-column regions laterally arranged in the second column region, where a doping concentration of the first sub-column region decreases in a direction from the first column region to the second sub-column region, and where a doping concentration of the second sub-column region decreases in a direction from the first column region to the first sub-column region.
Abstract: An isolated converter with switched capacitors can include: a first capacitor; a first group of switches coupled between two terminals of an input port, where the first group of switches is configured to selectively couple a first terminal of the first capacitor to one of a first terminal and a second terminal of the input port; a second group of switches coupled between two terminals of an output port, where the second group of switches is configured to selectively couple a second terminal of the first capacitor to one of a first terminal and a second terminal of the output port; and a second capacitor coupled between one of the first and second terminals of the input port and one of the first and second terminals of the output port.
Abstract: A three-level DC-DC converter can include: first and second switches successively coupled between a first terminal of an input port and a middle terminal; third and fourth switches successively coupled between the middle terminal and a second terminal of the input port; a flying capacitor coupled between a common node of the first and second switches and a common node of the third and fourth switches; and a voltage balancing circuit configured to adjust a charge amount or a discharge amount of the flying capacitor based on an error signal characterizing an error between a voltage across the flying capacitor and a predetermined value, in order to maintain the voltage across the flying capacitor within a predetermined range, where the predetermined value is within the predetermined range.
Abstract: A control circuit for a boost converter can include: a comparison circuit configured to compare an input voltage of the boost converter against an output voltage of the boost converter, and to generate first and second control signals; an option circuit configured to provide a third control signal generated by a drive circuit of the boost converter to a control terminal of a synchronous power transistor of the boost converter, in accordance with the first and second control signals, when the output voltage is greater than the input voltage; and the option circuit being configured to provide a DC voltage to the control terminal of the synchronous power transistor, in accordance with the first and second control signals, in order to provide a current path for an inductor current of the boost converter through the synchronous power transistor, when the output voltage is not greater than the input voltage.
Abstract: An optical detection assembly can include: a light-emitting device and a photoelectric conversion device installed in parallel on a substrate, where light generated by the light-emitting device is irradiated onto an object, and the photoelectric conversion device is configured to convert a reflected light of the object into an electrical signal; and a housing formed by light shielding material installed on the substrate, where the housing includes a first chamber for accommodating the light-emitting device, a sidewall that separates the light-emitting device and the photoelectric conversion device, and at least one emitting light opening at the top of the first chamber and having an axis inclined at a tilt angle.
Abstract: A switching time generation circuit can include: a regulation circuit configured to generate a regulation signal in accordance with change information of an output signal of a switching converter; and the regulation circuit being configured to adjust a switching state of a power switch based on the regulation signal, where the switching converter includes a power stage circuit having the power switch.
Abstract: The present disclosure relates to a resonance-type contactless power supply, an integrated circuit and a constant voltage control method. The resonance-type contactless power supply includes an inverter, a transmitter-side resonant circuit, a receiver-side resonant circuit, a rectifier circuit, and an output capacitance. In this resonance-type contactless power supply, the inverter receives electric energy, which is transferred to the rectifier circuit in a first state and is not transferred to the rectifier circuit in a second state. By switching between the first state and the second state, the resonance-type contactless power supply is controlled to provide a relatively constant voltage, and can be electrically coupled directly to a constant-voltage-type load.
Abstract: A resonance-type contactless power supply has the characteristic that an inductor current has a maximum value when it operates at a resonance frequency. Sampling values of the inductor current in two successive cycles are compared with each other. A frequency of an inverter circuit is adjusted in a manner the same as that in a previous cycle in a case that the inductor current increases, and is adjusted in a manner opposite to that in the previous cycle in a case that the inductor current decreases. Thus, the resonance-type contactless power supply can be properly tuned without the need for zero-crossing detection.
Abstract: A package structure of a power converter, can include: a die pad; an insulation adhesive layer and a conductive adhesive layer on the die pad; a control circuit die on the insulation adhesive layer, where the insulation adhesive layer comprises a first insulation adhesive layer on a back surface of the control circuit die, and a second insulation adhesive on a surface of the die pad, where the first insulation adhesive layer is connected to the second insulation adhesive layer; and a power device die on the conductive adhesive layer, where the insulation adhesive layer is separated from the conductive adhesive layer.
Abstract: A pseudo differential analog-to-digital converter includes: a first capacitor array and a second capacitor array respectively coupled to input terminals of an analog-to-digital circuit; where an output terminal of the first capacitor array receives a first reference voltage, and an output terminal of the second capacitor array receives a second reference voltage; and where a difference between the first and second reference voltages is set between zero and a peak value of an analog input signal.
Abstract: A frequency control circuit, applied in a switching converter, can be configured to: regulate an off time of a power transistor of the switching converter in one switching cycle according to an on time of the power transistor, or regulate the on time of the power transistor in one switching cycle according to the off time of the power transistor; and maintain an operating frequency of the switching converter to be within a predetermined range.
Abstract: A DC-DC converter can include: a switched capacitor converter including at least one switch group and at least one capacitor, where each switch group includes two switches coupled in series, and at least one capacitor is respectively coupled in parallel with a corresponding one of the switch groups; and a switch converter including a first magnetic component, where the switch converter is configured to share one of the switch groups, the first magnetic component is coupled to an intermediate node of the shared switch group, and the intermediate node is a common coupling point of two switches of the shared switch group.
Abstract: An optical package assembly can include: a first circuit board; a second circuit board and a first structure arranged on the first circuit board, where the second circuit board is adjacent to the first structure; and a second structure arranged on the second circuit board, where a thickness of the first structure is equal to a combined thickness of the second circuit board and the second structure.