Abstract: The present invention relates to a method for the production of at least one three-dimensional layer of solid material, in particular for usage as wafer, and/or at least one tree-dimensional solid body.
Abstract: The present invention relates to a method for producing solid body layers. The claimed method comprises at least the following steps: providing a solid body (2) for separating at least one solid body layer (4), arranging a receiving layer (10) on the solid body for holding the solid body layer (4), said receiving layer being made of at least one polymer and an additional material, said receiving layer, in terms of volume, be made mainly of polymer, the additional material having a greater conductivity than the polymer, and the receiving layer (10) is subjected to thermal stress, in particular, mechanical stress, for generating voltages in the solid body (2), wherein a crack in the solid body (2) along a separation plane (8) expands due to the voltages, the solid layer (4) being separated from the solid body (2) due to the crack.
Type:
Application
Filed:
September 24, 2015
Publication date:
August 16, 2018
Applicant:
Siltectra GMBH
Inventors:
Richter Jan, Christian Beyer, Anas Ajaj
Abstract: The overall yield of a splitting method for division of a solid-state starting material into at least two solid-state pieces is increased by use of a polymer hybrid material comprising one or more fillers in a polymer matrix. A corresponding splitting method comprises the steps of providing the solid-state starting material with at least one exposed surface, applying a polymer hybrid material comprising fillers in a polymer matrix to at least one exposed surface of the solid-state starting material, so as to result in a composite structure, and subjecting the composite structure to a stress field such that the solid-state starting material is split along a plane within the solid-state starting material into at least two solid-state pieces.
Type:
Application
Filed:
October 6, 2015
Publication date:
August 16, 2018
Applicant:
SILTECTRA GMBH
Inventors:
Wolfram DRESCHER, Jan RICHTER, Christian BEYER
Abstract: The present invention relates to a device (1) for separating at least one wafer from a donor substrate (2). The device (1) according to the invention comprises at least a housing (4) with a receiving space (6) for receiving at least one multi-layer arrangement (8) which consists of at least one donor substrate (2) and a receiving layer (10) arranged or generated thereon, and an application device (12) for the contactless application of the multi-layer arrangement (8) for generating crack-conducting stresses in the multi-layer arrangement (8).
Abstract: The invention relates to a method for cutting off at least one portion (4), in particular a wafer, from a solid body (2). The method comprises at least the following steps: modifying the crystal lattice of the solid body (2) by means of a modifier (18), wherein a number of modifications (19) are produced to form a nonplanar, in particular convex, detachment region (8) in the interior of the solid body, wherein the modifications (19) are produced in accordance with predetermined parameters, wherein the predetermined parameters describe a relationship between a deformation of the portion (4) and a defined further treatment of the portion (4), detaching the portion (4) from the solid body (2).
Abstract: The invention relates to a method for the production of layers of solid material, in particular for use as wafers, comprising the following steps: providing a workpiece for the separation of layers of solid material, the workpiece having at least one exposed surface, producing and/or providing a carrier unit for receiving at least one layer of solid material, the carrier unit being made in a number of layers, the carrier unit having a stabilisation layer and the stabilisation layer being overlapped at least partially by a receiving layer, the receiving layer being made to hold the layer of solid material, and the stabilisation layer being formed, at least partially, such that it has an E modulus that is greater than the E modulus of the receiving layer, connecting the receiving layer to the exposed surface of the workpiece, thus forming a composite structure, exposing the composite structure to an inner and/or outer stress field such that the layer of solid material is separated along a plane of the workpiece
Abstract: A method of printing comprises the steps of: providing a solid state material having an exposed surface; applying an auxiliary layer to the exposed surface to form a composite structure, the auxiliary layer having a stress pattern; subjecting the composite structure to conditions facilitating fracture of the solid state material along a plane at a depth therein; and removing the auxiliary layer and, therewith, a layer of the solid state material terminating at the fracture depth, wherein an exposed surface of the removed layer of solid state material has a surface topology corresponding to the stress pattern.
Abstract: A method of printing comprises the steps of: providing a solid state material having an exposed surface; applying an auxiliary layer to the exposed surface to form a composite structure, the auxiliary layer having a stress pattern; subjecting the composite structure to conditions facilitating fracture of the solid state material along a plane at a depth therein; and removing the auxiliary layer and, therewith, a layer of the solid state material terminating at the fracture depth, wherein an exposed surface of the removed layer of solid state material has a surface topology corresponding to the stress pattern.