Patents Assigned to Solution Inc.
-
Patent number: 5774471Abstract: A multi-location word line repair circuit is described that can be employed in a static memory including a plurality of sub-arrays responsive to respective sets of global word lines (GWL). Included in the repair circuit is a redundant word line (WL) decoder that stores and subsequently decodes the address of a defective global word line to be repaired. A selector circuit coupled to the redundant WL decoder is activated whenever the decoder decodes the stored address of the defective GWL from the memory address lines. When this occurs, the selector circuit activates at least one redundant global word line to repair the defective global word line within a selected group of global word lines that can include any combination of the respective sets of GWLs that are provided to the plurality of sub-arrays. To prevent the defective GWL from interfering with a memory operation being performed by the substitute RWL, a deselector circuit disables the defective global word line within the selected group of word lines.Type: GrantFiled: December 17, 1996Date of Patent: June 30, 1998Assignee: Integrated Silicon Solution Inc.Inventor: Yong H. Jiang
-
Patent number: 5767729Abstract: A distribution charge pump is disclosed that provides a high voltage output that can be used to write or erase EEPROM cells. The charge pump is enabled by a high (VCC) input signal, which is input to a pair of always-on pass transistors. The output of one of these pass transistors turns on a third transistor whose source is tied to an internal node that is coupled to one terminal of a MOS capacitor and the gate of a fourth transistor. The other terminal of the MOS capacitor is tied to a clock signal and the source and drain of the fourth transistor are tied respectively to the charge pump output and a high voltage power supply node (VPP). The capacitor stores charge on the internal node when the clock signal goes high and discharges when the clock signal goes low. Due to this discharge, the voltage at the internal node drops, which causes the third transistor to turn on and supply charge to the internal node, preventing the complete discharge of charges stored during the positive phase of the clock cycle.Type: GrantFiled: October 31, 1996Date of Patent: June 16, 1998Assignee: Integrated Silicon Solution Inc.Inventor: Paul Jei-Zen Song
-
Patent number: 5729551Abstract: The present invention is a space efficient redundant column decoder circuit for use in a non-volatile memory device. The redundant column decoder compares a n-bit stored defective address with a n-bit presented address. Based on this comparison, an output signal is generated. This output signal is used both to specify the redundant column (or set of columns) associated with the redundant column decoder circuit, and to de-activate all of the other column decoders in the device. The redundant column decoder has a pull-up path and a parallel combination of n pairs of complementary pull-down paths. The pull-up path is connected to the pull-down paths at an output node, and the output signal is taken at this output node. Each pair of complementary pull-down paths has a first pull-down path and a second pull-down path. The first pull down path has a first non-volatile memory cell in series with and connected to a first address transistor. The first address transistor is also connected to the output node.Type: GrantFiled: December 17, 1996Date of Patent: March 17, 1998Assignee: Integrated Silicon Solution, Inc.Inventors: Eung Joon Park, Hsi-Hsien Hung
-
Patent number: 5661683Abstract: An on-chip positive and negative high voltage wordline x-decoding system for EPROM/FLASH is disclosed wherein three transistors are required for each wordline. The x-decoding system minimizes system latch-up by separating the positive and negative high voltage portions of the system. The high-voltage portion of the x-decoding system includes a native mode PMOS transistor fabricated in a N-well on a common P-substrate and a high-voltage NAND gate that supplies a control signal to the gate of the PMOS transistor. In response to a variable power signal (which is at O VDC in erase mode, VCC in a read mode, and approximately +10 VDC in program mode) and the control signal (which is low when the memory cell is selected and the system is in read or program modes), the positive portion pulls the selected word line up to VCC and +10 VDC in read and program modes, respectively.Type: GrantFiled: February 5, 1996Date of Patent: August 26, 1997Assignee: Integrated Silicon Solution Inc.Inventor: Paul Jei-Zen Song
-
Patent number: 5642310Abstract: A double erase control circuit is disclosed for use with an EEPROM/flash memory system wherein each memory cell can be read, erased or programmed based, in part, on the voltage level of a word line coupled to the gate of each of the memory cells. A host selectively erases flash memory cells by placing 0 VDC on the word lines and a large positive voltage (10.4 VDC to 10.8 VDC) on an array virtual ground supply (VVSS) line while the drains of the memory cells float. The voltage and current on the VVSS line are simultaneously controlled using voltage and current control circuitry that are responsive to a high erase signal that is asserted by the host during an erase operation. When the erase signal is high, the voltage control circuitry uses a comparator, a stable reference voltage (1.28 VDC) derived from a band-gap reference and a feedback loop to maintain VVSS at the target source erase voltage (i.e., 10.4 VDC to 10.8 VDC).Type: GrantFiled: February 2, 1996Date of Patent: June 24, 1997Assignee: Integrated Silicon Solution Inc.Inventor: Paul Jei-zen Song
-
Patent number: 5600836Abstract: The invention provides a system and method for processing date-dependent information in two-digit format where the dates are in one or two centuries. The system according to the invention includes time change interfaces that convert date data from local time to zone time so that all of the dates are in one century. An application processes the date data in zone time instead of local time. The date data output from the application after processing is represented in zone time and therefore is converted by a time change interface from zone time to local time. According to the inventive method, the two-digit years provided as inputs to the application are adjusted by either a time change value or a complement value. The time change value is the difference in years between local time and zone time. The complement value is the difference between one hundred years and the time change value.Type: GrantFiled: November 14, 1995Date of Patent: February 4, 1997Assignee: Turn of the Century Solution, Inc.Inventor: Harvey Alter
-
Patent number: 5579262Abstract: A program verify and erase verify control circuit is disclosed for use with an EEPROM/flash memory system wherein each memory cell can be read, erased or programmed based, in part, on the voltage level of a word line coupled to the gate of each of the memory cells. Program operations are verified by placing a worst case (i.e., highest) read voltage on the word lines of programmed memory cells. Similarly, erase operations are verified by placing a worst case (i.e., lowest) read voltage on the word lines of erased memory cells. So that there worst case voltages are stable and reproducible, they are generated using a feedback control circuit consisting of a comparator driven by a bandgap voltage reference (+1.28 VDC ), various feedback transistors and a voltage divider network. The worst case program verification voltage (+6.4 VDC) and the worst case erase verification voltage (+4.Type: GrantFiled: February 5, 1996Date of Patent: November 26, 1996Assignee: Integrated Silicon Solution, Inc.Inventor: Paul J. Song
-
Patent number: 5568425Abstract: A program drain voltage control system is disclosed for use within an EPROM/flash memory system wherein each memory cell is coupled in series with plural y selection transistors. When the EPROM/flash memory system is in programming mode, the control system maintains the program drain voltage of EPROM/flash memory cells being programmed at a target drain voltage (+6.1 VDC ). Drain voltage control is accomplished using a current control circuit and a voltage control circuit. The voltage control circuit uses a comparator driven by a voltage reference signal (+1.28 VDC) derived from the bandgap reference and by a voltage divider output. When the output from the voltage divider is larger than the reference voltage, the comparator output goes high, turning on a pulldown transistor, which pulls down the node where the target voltage is to be established.Type: GrantFiled: February 2, 1996Date of Patent: October 22, 1996Assignee: Integrated Silicon Solution, Inc.Inventor: Paul J. Song
-
Patent number: 5502925Abstract: A mechanism for opening and closing the sash of a window which includes first and second sash brackets, a drive mechanism, first and second flexible timing belts, structure for connecting the timing belts to the sash brackets and mechanisms for connecting the two timing belts. The structure for connecting the timing belts is adjustable in length to facilitate the tensioning of the belts. Tensioning springs are also included.Type: GrantFiled: November 12, 1993Date of Patent: April 2, 1996Assignee: A-Solution, Inc.Inventor: Robert A. Gorrell
-
Patent number: 5453388Abstract: Disclosed is a flash EEPROM cell needing only a 5 volt external source using an on-chip voltage multiplier circuit to provide high voltages necessary to effect Fowler-Nordheim tunneling during both the program and erase modes. Properties of dielectric layers between a floating gate and a control gate and between the floating gate and a drain region differ to facilitate programming and erasing of the floating gate. Also disclosed is a method for producing a flash EEPROM cell by forming the insulative layer between a floating gate and a control gate to have a capacitance lower than the capacitance of the insulating layer between the floating gate and a drain region.Type: GrantFiled: October 7, 1993Date of Patent: September 26, 1995Assignee: Integrated Silicon Solution, Inc.Inventors: Ling Chen, Tien-ler Lin, Albert Wu
-
Patent number: 5373465Abstract: Disclosed is a flash EEPROM cell needing only a 5 volt external source using an on-chip voltage multiplier circuit to provide high voltages necessary to effect Fowler-Nordheim tunneling during both the program and erase modes. Properties of dielectric layers between a floating gate and a control gate and between the floating gate and a drain region differ to facilitate programming and erasing of the floating gate. Also disclosed is a method for producing a flash EEPROM cell by forming the insulative layer between a floating gate and a control gate to have a capacitance lower than the capacitance of the insulating layer between the floating gate and a drain region.Type: GrantFiled: October 7, 1993Date of Patent: December 13, 1994Assignee: Integrated Silicon Solution, Inc.Inventors: Ling Chen, Tien-ler Lin, Albert Wu
-
Patent number: 5317179Abstract: Disclosed is a flash EEPROM cell needing only a 5 volt external source using an on-chip voltage multiplier circuit to provide high voltages necessary to effect Fowler-Nordheim tunneling during both the program and erase modes. Properties of dielectric layers between a floating gate and a control gate and between the floating gate and a drain region differ to facilitate programming and erasing of the floating gate. Also disclosed is a method for producing a flash EEPROM cell by forming the insulative layer between a floating gate and a control gate to have a capacitance lower than the capacitance of the insulating layer between the floating gate and a drain region.Type: GrantFiled: September 23, 1991Date of Patent: May 31, 1994Assignee: Integrated Silicon Solution, Inc.Inventors: Ling Chen, Tien-ler Lin, Albert Wu
-
Patent number: 5216268Abstract: Disclosed is a byte-erasable EEPROM memory cell which utilizes a five volt external source and a voltage multiplier circuit to program and erase a floating gate by means of electron tunneling. To prevent collapse of the voltage multiplier circuit a lightly doped drain region is incorporated preventing gate modulated junction breakdown, thereby preventing collapse of the voltage multiplier circuit. In addition, current flow through the channel separating a source region and the lightly doped drain region is controlled by a portion of a control gate and the floating gate, thereby allowing a higher erased cell threshold voltage. Also disclosed is a process for forming the lightly doped drain region by using the control gate as an effective sidewall spacer.Type: GrantFiled: September 23, 1991Date of Patent: June 1, 1993Assignee: Integrated Silicon Solution, Inc.Inventors: Ling Chen, Tien-ler Lin
-
Patent number: D352130Type: GrantFiled: October 21, 1992Date of Patent: November 1, 1994Assignee: The Perfect Solution, Inc.Inventor: Clarence D. Zierhut