Patents Assigned to Spin Memory, Inc.
  • Patent number: 10803949
    Abstract: A clocked driver circuit can include a master-slave level shifter latch and a driver. The master-slave level shifter latch can be configured to receive an input signal upon a first state of a clock signal, latch the input signal upon a second state of the clock signal and generate a level shifted output signal corresponding to the latched input signal. The driver can be configured to receive the level shifted output signal from the master-slave level shifter and drive the output signal on a line. The signal levels of the output signal can be greater than the signal level of the input signal.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: October 13, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Neal Berger, Susmita Karmakar, Benjamin Louie
  • Patent number: 10797233
    Abstract: The various implementations described herein include methods, devices, and systems for fabricating magnetic memory devices. In one aspect, a method of fabricating a magnetic memory device includes: (1) providing a dielectric substrate with a metallic core protruding from the dielectric substrate, where: (a) a first portion of the metallic core is surrounded by the dielectric substrate and a second portion of the metallic core protrudes away from a surface of the dielectric substrate; and (b) the second portion includes: (i) a surface offset from the surface of the dielectric substrate and (ii) sidewalls extending away from the surface of the dielectric substrate to the offset surface; (2) depositing a first ferromagnetic layer on exposed surfaces of the metallic core and the dielectric substrate; (3) depositing a spacer layer on exposed surfaces of the first ferromagnetic layer; and (4) depositing a second ferromagnetic layer on exposed surfaces of the spacer layer.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: October 6, 2020
    Assignee: SPIN MEMORY, INC.
    Inventors: Marcin Gajek, Michail Tzoufras, Davide Guarisco, Eric Michael Ryan
  • Patent number: 10790333
    Abstract: According to one embodiment, a method includes forming, at a low temperature, a thin film transistor structure above a flexible substrate in a film thickness direction. The low temperature is less than about 200° C., and the thin film transistor structure includes a contact pad on a lower or upper surface thereof. The method also includes forming, at a high temperature, a perpendicular magnetic tunnel junction (pMTJ) structure above a rigid substrate. The high temperature is greater than about 200° C. The method also includes removing the rigid substrate from below the pMTJ structure and bonding, at the low temperature, the pMTJ structure to the thin film transistor structure using an adhesion layer. Other methods of forming flexible substrates for mounting pMTJs and systems thereof are described in accordance with more embodiments.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: September 29, 2020
    Assignee: SPIN MEMORY, INC.
    Inventors: Kuk-Hwan Kim, Marcin Gajek, Dafna Beery, Amitay Levi
  • Patent number: 10784439
    Abstract: A Magnetic Tunnel Junction (MTJ) device can include a second Precessional Spin Current (PSC) magnetic layer of Ruthenium (Re) having a predetermined thickness and a predetermined smoothness. An etching process for smoothing the PSC magnetic layer can be performed in-situ with various deposition processes after a high temperature annealing of the MTJ formation.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: September 22, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Bartlomiej Kardasz, Jorge Vasquez, Mustafa Pinarbasi
  • Patent number: 10784437
    Abstract: A Magnetic Tunnel Junction (MTJ) device can include a reference magnetic layer having one or more trenches disposed therein. One or more sections of a tunnel barrier layer can be disposed on the walls of the one or more trenches. One or more sections of a free magnetic layer can be disposed on the one or more sections of the tunnel barrier layer in the one or more trenches. One or more sections of a conductive layer can be disposed on the one or more sections of the free magnetic layer in the one or more trenches. One or more insulator blocks can be disposed between corresponding sections of the tunnel barrier layer, corresponding sections of the free magnetic layer and corresponding sections of the conductive layer in the one or more trenches.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: September 22, 2020
    Assignee: SPIN MEMORY, Inc.
    Inventor: Satoru Araki
  • Patent number: 10777736
    Abstract: Described embodiments can be used in semiconductor manufacturing and employ materials with high and low polish rates to help determine a precise polish end point that is consistent throughout a wafer and that can cease polishing prior to damaging semiconductor elements. The height of the low polish rate material between the semiconductor elements is used as the polishing endpoint. Because the low polish rate material slows down the polishing process, it is easy to determine an end point and avoid damage to the semiconductor elements. An additional or alternative etch end point can be a thin layer of material that provides a very clear spectroscopy signal when it has been exposed, allowing the etch process to cease.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 15, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Mustafa Michael Pinarbasi, Jacob Anthony Hernandez, Arindom Datta, Marcin Jan Gajek, Parshuram Balkrishna Zantye
  • Patent number: 10770510
    Abstract: A device having two transistors with dual thresholds, and a method of fabricating the device, including fabricating a silicide source, a conductive layer, and contacts to a plurality of layers of the device, is provided. The device has a core and a plurality of layers that surround the core in succession, including a first layer, a second layer, a third layer, and a fourth layer. The device further comprises a first input terminal coupled to the core, the first input terminal being configured to receive a first voltage and a second input terminal coupled to the fourth layer, the second input terminal being configured to receive a second voltage. The device comprises a common source terminal coupled to the core and the fourth layer. A memory device, such as an MTJ, may be coupled to the device.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: September 8, 2020
    Assignee: SPIN MEMORY, INC.
    Inventors: Gian Sharma, Amitay Levi, Kuk-Hwan Kim
  • Patent number: 10770561
    Abstract: An annular device is provided. The annular device includes a first transistor including a first input terminal and a second transistor including a second input terminal. The first input terminal and the second input terminal extend radially outward from the annular device, and wherein the first input terminal is aligned with the second input terminal.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: September 8, 2020
    Assignee: SPIN MEMORY, INC.
    Inventors: Gian Sharma, Amitay Levi, Kuk-Hwan Kim
  • Patent number: 10734574
    Abstract: A perpendicular synthetic antiferromagnetic (pSAF) structure and method of making such a structure is disclosed. The pSAF structure comprises a first high perpendicular Magnetic Anisotropy (PMA) multilayer and a second high PMA layer separated by a thin Ruthenium layer. Each PMA layer is comprised of a first cobalt layer and a second cobalt layer separated by a nickel/cobalt multilayer. After each of the first and second PMA layers and the Ruthenium exchange coupling layer are deposited, the resulting structure goes through a high temperature annealing step, which results in each of the first and second PMA layers having a perpendicular magnetic anisotropy.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: August 4, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Bartlomiej Adam Kardasz, Mustafa Michael Pinarbasi, Jacob Anthony Hernandez
  • Patent number: 10734573
    Abstract: A Magnetic Tunnel Junction (MTJ) can include an annular structure and a planar reference magnetic layer disposed about the annular structure. The annular structure can include an annular non-magnetic layer disposed about an annular conductive layer, an annular free magnetic layer disposed about the annular non-magnetic layer, and an annular tunnel insulator disposed about the annular free magnetic layer. The planar reference magnetic layer can be separated from the free magnetic layer by the annular tunnel barrier layer.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: August 4, 2020
    Assignee: Spin Memory, Inc.
    Inventor: Satoru Araki
  • Patent number: 10720573
    Abstract: A method for manufacturing a magnetic random access memory array at a density greater than would be possible using photolithography. A template is formed having a pattern that is configured to define a memory array. A block copolymer material is deposited onto the template and annealed to form narrow cylinders of ordered block copolymer material. A metal oxide is then diffused into the cylinders to form narrow metal oxide cylinders. The metal oxide cylinders can then be used as mask structures to pattern a hard mask layer. An ion milling process can then be performed to transfer the image of the patterned hard mask onto an underlying magnetic memory material to form an array having features sizes smaller than what would be possible using photolithography.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: July 21, 2020
    Assignee: SPIN MEMORY, INC.
    Inventors: Elizabeth A. Dobisz, Prachi Shrivastava
  • Publication number: 20200220074
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes a precessional spin current (PSC) magnetic structure in conjunction with a perpendicular MTJ where the in-plane magnetization direction of the PSC magnetic layer is free to rotate. The precessional spin current magnetic layer a first and second precessional spin current ferromagnetic layer separated by a nonmagnetic precessional spin current insertion layer.
    Type: Application
    Filed: March 17, 2020
    Publication date: July 9, 2020
    Applicant: Spin Memory, Inc.
    Inventors: Bartlomiej Adam KARDASZ, Mustafa Michael PINARBASI
  • Publication number: 20200220070
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes a precessional spin current (PSC) magnetic layer in conjunction with a perpendicular MTJ where the in-plane magnetization direction of the PSC magnetic layer is free to rotate. The precessional spin current magnetic layer is constructed with a material having a face centered cubic crystal structure, such as permalloy.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Applicant: Spin Memory, Inc.
    Inventors: Mustafa PINARBASI, Bartlomiej Adam KARDASZ
  • Patent number: 10699761
    Abstract: A clocked driver circuit can include a level shifter latch and a driver. The level shifter latch can be configured to receive an input signal upon a clock signal and generate a level shifted output signal. The driver can be configured to receive the level shifted output signal from the level shifter and drive the output signal on a line. The signal levels of the output signal can be greater than the signal level of the input signal.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: June 30, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Neal Berger, Susmita Karmakar, Benjamin Louie
  • Patent number: 10693056
    Abstract: A magnetic memory device is provided. The magnetic memory device includes: (i) a cylindrical core, (ii) a metallic buffer layer that surrounds the cylindrical core, (iii) a first ferromagnetic layer that surrounds the metallic buffer layer, (iv) a barrier layer that surrounds the first ferromagnetic layer, and (v) a second ferromagnetic layer that surrounds the barrier layer. The cylindrical core, the metallic buffer layer, the first ferromagnetic layer, the barrier layer, and the second ferromagnetic layer collectively form a magnetic tunnel junction.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: June 23, 2020
    Assignee: SPIN MEMORY, INC.
    Inventors: Marcin Gajek, Michail Tzoufras
  • Patent number: 10692556
    Abstract: The various implementations described herein include magnetic memory devices and systems, and methods for injecting defects into the devices and systems. In one aspect, a magnetic memory device comprises a non-magnetic cylindrical core, a first portion, and a second portion. The core is configured to receive a current. The first portion surrounds the core and is configured to introduce magnetic instabilities into the second portion. The second portion is adjacent to and arranged in a stack with respect to the first portion. The second portion also surrounds the core and is configured to store information based on a respective position of the magnetic instabilities. The second portion comprises a first plurality of magnetic layers and a first plurality of non-magnetic layers. Respective magnetic layers of the first plurality of magnetic layers are separated by respective non-magnetic layers of the plurality of non-magnetic layers.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 23, 2020
    Assignee: SPIN MEMORY, INC.
    Inventors: Michail Tzoufras, Marcin Gajek
  • Patent number: 10692569
    Abstract: Techniques for reading a Multi-Bit Cell (MBC) can include sensing a state parameter value, such as source line voltage, and applying a successive one of N programming parameter values, such as successive programming currents, between instances of sensing the state parameter values. The N successive programming parameter values can be selected to switch the state of a corresponding one of N cell elements of the MBC. Successive ones of the sensed state parameter values can be compared to determine N state change results, which can be used to determine the read state of the MBC.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: June 23, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Michail Tzoufras, Marcin Gajek, Kadriye Deniz Bozdag, Mourad El Baraji
  • Patent number: 10686009
    Abstract: A method for forming three-dimensional magnetic memory arrays by forming crystalized silicon structures from amorphous structures in the magnetic memory array, wherein the temperature needed to crystalize the amorphous silicon is lower than the temperature budget of the memory element so as to avoid damage to the memory element. An amorphous silicon is deposited, followed by a layer of Ti or Co. An annealing process is then performed which causes the Ti or Co to form TiSi2 or CoSi2 and also causes the underlying amorphous silicon to crystallize.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: June 16, 2020
    Assignee: SPIN MEMORY, INC.
    Inventors: Kuk-Hwan Kim, Dafna Beery, Marcin Gajek, Michail Tzoufras, Kadriye Deniz Bozdag, Eric Michael Ryan, Satoru Araki, Andrew J. Walker
  • Patent number: 10684310
    Abstract: A magnetic field transducer mounting apparatus can include a first mount configured to fixedly couple to a side surface of a wafer test fixture magnet, and a second and third mount configured to adjustably position a magnetic field transducer in a predetermined location proximate a face of the wafer test fixture magnet.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: June 16, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Danny Yam, Jorge Vasquez, Georg Wolf, Roberto Cordero
  • Patent number: 10679685
    Abstract: A magnetoresistive memory architecture in one aspect includes a plurality of bit lines each coupled to two or more respective columns of magnetoresistive memory cells, and a plurality of source lines each coupled to a respective one of the columns of memory cells. A given memory cell can be accessed by biasing a selected word line, a selected bit line, and a selected source line coupled to corresponding column of memory cells coupled to the selected bit line, and by counter biasing one or more selected source lines coupled to one or more other columns of memory cells coupled to the selected bit line.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: June 9, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Loc Hoang, Amitay Levi