Patents Assigned to Spirent Communications
  • Patent number: 12292515
    Abstract: Disclosed is route planning using a worst-case risk analysis and, if needed, a best-case risk analysis of GNSS coverage. The worst-case risk analysis identifies cuboids or 2d regions through which a vehicle can be routed with assurance that adequate GNSS coverage will be available regardless of the time of day that the vehicle travels. The best-case risk analysis identifies cuboids or 2d regions through which there is adequate coverage at some times during the day. In case path finding using the worst-case risk analysis fails, a best-case risk analysis can be requested and used to find alternate potential path(s). Time dependent forecast data that covers regions along the alternate potential path(s) can be requested and used to route vehicles, including autonomous drones, from starting points to destinations. This includes generation, distribution and use of risk analysis data, implemented as methods, systems and articles of manufacture.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: May 6, 2025
    Assignee: Spirent Communications PLC
    Inventors: Matthew Pottle, Esther Anyaegbu, Colin Richard Ford, Paul Hansen, Ronald Toh Ming Wong, Jeremy Charles Bennington, Samuel Nardoni
  • Patent number: 12282101
    Abstract: Disclosed is determining GNSS satellite position visibility by possessing an orbital segment representing the transit of a satellite in orbit over time, a coarse ray angle interval, a fine ray angle interval, and a digital surface model. Disclosed is propagating coarse ray at coarse ray angle intervals increments in a first pass between an observable point and orbital segment at a respective coarse ray angle to determine whether the coarse ray is obstructed by features of the DSM, and recording a status of the coarse ray based on whether the coarse ray was obstructed. If pairs of successive coarse rays have different status, designating the coarse ray with NLOS visibility, then performing a second pass by propagating, per each designated coarse ray, fine rays at fine ray angle intervals, and saving an indication of time at which LOS visibility to the satellite is obstructed.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: April 22, 2025
    Assignee: Spirent Communications PLC
    Inventors: Jeremy Charles Bennington, Richard West, Paul Hansen, Esther Anyaegbu, Matthew Pottle
  • Patent number: 12265159
    Abstract: Disclosed is reducing starting time for a GNSS receiver that has an imprecise initial starting location by requesting starting assistance from a CDN that caches predictive data including first data indicated predicted LOS visibility from the receiver to individual satellites, wherein the request includes the imprecise initial staring location, receiving, from the CDN, data that includes a first block of the predictive data for the imprecise initial staring location and further adjoining second blocks of predictive data for areas surrounding the imprecise staring location, determining, by the GNSS receiver, commonly available satellites that have visibility from locations in both the first block and the second block, and calculating a first starting position using weighted values for the satellites, the commonly available satellites having higher weighted value than satellites without visibility in both locations, whereby position uncertainty of the first starting position is reduced from the imprecise initial
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: April 1, 2025
    Assignee: Spirent Communications PLC
    Inventors: Jeremy Charles Bennington, Richard West, Paul Hansen, Esther Anyaegbu, Matthew Pottle
  • Patent number: 12259478
    Abstract: Disclosed is incorporating an IQ stream into a test signal for a receiver in motion, configuring a path for the motion of the receiver during simulation, a period of the simulation, a transmitter constellation to emulate, and a path of at least one IQ stream transmitter. Also generating signals emulating the transmitter constellation and conditioning the stream to be merged with the signals, using distance and relative motion between receiver and transmitter to determine delay and Doppler shift between transmitter and receiver in motion, scheduling sampling of the signal, including interpolation among samples of the stream, based on delay and Doppler shift, and synthesizing a conditioned stream from the interpolation between the samples, taking into account signal level of the stream, in addition to delay and shift, and merging the conditioned signal with the signals emulating the transmitter constellation and supplying the merged signals to the receiver during the test.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: March 25, 2025
    Assignee: Spirent Communications, PLC
    Inventors: Felix Michael Krefft, Stephen Nigel Beales, Mark Geoffrey Holbrow
  • Patent number: 12200516
    Abstract: The disclosed technology teaches testing voice connection routing over 911 circuits as if voice calls originated from an E911 device in coverage areas of cell tower locations, without requiring a physical presence of the E911 device in each coverage area. A remote test agent audio bridge and tester originates a first call to a test user with a first phone number, creates a media bridge, emulates an E911-compliant mobile device to originate a second call to a 911 operator, relays audio over the media bridge as a verbal exchange between the first and the second calls, and logs an evaluation of the verbal exchange. The emulation includes spoofing a call origination from an origination location being tested, the spoofed origination location being within coverage of an originating cell.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: January 14, 2025
    Assignee: Spirent Communications, Inc.
    Inventors: Mikhail Beylin, Ronald Royer, Dat Phan, Ehab Bahjat, In Seo
  • Patent number: 12193107
    Abstract: A wireless link monitor is configured to operate as an active client that can send and/or receive wireless traffic to and/or from wireless devices-under-test (DUTs) in the network. When the wireless link monitor operates as an active client, the DUTs can send respective wireless traffic to the wireless link monitor. This ensures that the wireless link monitor receives the wireless traffic even when the DUTs transmit their wireless signals narrowly (e.g., in adaptive beamforming technologies).
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: January 7, 2025
    Assignee: Spirent Communications, Inc.
    Inventors: Fanny Mlinarsky, Ron Cook
  • Patent number: 12192591
    Abstract: At least three uses of the technology disclosed are immediately recognized. First, a video stream classifier can be trained that has multiple uses. Second, a trained video stream classifier can be applied to monitor a live network. It can be extended by the network provider to customer relations management or to controlling video bandwidth. Third, a trained video stream classifier can be used to infer bit rate switching of codecs used by video sources and content providers. Bit rate switching and resulting video quality scores can be used to balance network loads and to balance quality of experience for users, across video sources. Balancing based on bit rate switching and resulting video quality scores also can be used when resolving network contention.
    Type: Grant
    Filed: August 1, 2022
    Date of Patent: January 7, 2025
    Assignee: Spirent Communications, Inc.
    Inventors: Michael Colligan, Jeremy Bennington
  • Publication number: 20240402353
    Abstract: The disclosed technology for preparing digital samples for synthesis of RF to simulate channels and GNSS satellites using GPUs includes receiving simulated position and velocity of an antenna, dividing the cycle into points to be converted into the synthesized signal, and computing the points. A first LUT includes pseudo random sequences combinable to produce a code that varies over time for encoding the channel, and a second LUT specifies linear combinations of the pseudo random sequences in the first LUT that produce channel codes to produce the digital sample points. Also included is using GPUs to generate the channel code for a point by mapping the channel code and time position, combining the code with data to be encoded, repeatedly applying the using and combining to produce points, using multiple GPU cores to encode sample points concurrently in the cycle, and sending an ordered sequence of points to a converter.
    Type: Application
    Filed: August 8, 2024
    Publication date: December 5, 2024
    Applicant: Spirent Communications Plc
    Inventors: Felix Michael Krefft, Andrew Charles Baker, Rafal Waclaw Zbikowski, Mark Geoffrey Holbrow
  • Patent number: 12101229
    Abstract: The disclosed technology teaches techniques for generating a high quantity of internet traffic flows, such as in the form of data packets, to stress test network components by using range variable field modifiers. The techniques generate a large scale of flows at a relatively fast speed by using a process that may involve a finite state machine feedback loop and a multiple range variable field modifier process. Start and end range pointers for range entries of data packet modifiers are stored in memory and used with pointer and counter values, which are varied and updated in a relatively fast feedback loop. Data packet modifiers may be selected based on the pointer and counter values and are used to modify or generate data packets.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: September 24, 2024
    Assignee: Spirent Communications, Inc.
    Inventors: Jocelyn Kunimitsu, Craig Fujikami
  • Patent number: 12078667
    Abstract: Disclosed is an anechoic test chamber that includes six antenna probes, replacing a single probe with a small array, and using the array to form a beam to provide a similar signal to the probe signal, and reducing the transmission loss. At least five of the probes are aligned in the anechoic chamber such that the probes are aligned in azimuth along four columns separated from a center point by +/?5 degrees and +/?15 degrees. The probes are further aligned in elevation along three rows at the center point and separated from the center point by +/?5 degrees, wherein the alignments in azimuth and elevation are within 3 degrees measured spherically of the alignments stated. Also disclosed is a planar array that replaces probe antennas and forms beams to provide coverage to the chamber, and utilizing probe arrays to emulate base station signals to evaluate UE performance.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: September 3, 2024
    Assignee: SPIRENT COMMUNICATIONS, INC.
    Inventors: Jukka-Pekka Nuutinen, John Douglas Reed, Alfonso Rodriguez-Herrera
  • Patent number: 12068794
    Abstract: Path-loss measurements are determined for a test client device moving along a path in a field test environment in which field Wi-Fi mesh network nodes are distributed. The path-loss measurements are reproduced in a field-to-lab test environment that includes a test client device disposed in an electromagnetically-isolated chamber and field test Wi-Fi mesh network nodes disposed in respective electromagnetically-isolated chambers. The test client device and the field test Wi-Fi mesh network nodes are in wired or wireless communication with each other via signal lines. A programmable attenuator is electrically coupled to each signal line. The attenuation of each programmable attenuator is varied to reproduce the path-loss measurements from the field test environment. Path-loss measurements at the location of each field Wi-Fi mesh network node are also reproduced with the programmable attenuators to reproduce the field Wi-Fi mesh network node configuration.
    Type: Grant
    Filed: May 15, 2023
    Date of Patent: August 20, 2024
    Assignee: SPIRENT COMMUNICATIONS, INC.
    Inventors: Janne Linkola, Michael Haley
  • Patent number: 12066552
    Abstract: The disclosed technology for preparing digital samples for synthesis of RF to simulate channels and GNSS satellites using GPUs includes receiving simulated position and velocity of an antenna, dividing the cycle into points to be converted into the synthesized signal, and computing the points. A first LUT includes pseudo random sequences combinable to produce a code that varies over time for encoding the channel, and a second LUT specifies linear combinations of the pseudo random sequences in the first LUT that produce channel codes to produce the digital sample points. Also included is using GPUs to generate the channel code for a point by mapping the channel code and time position, combining the code with data to be encoded, repeatedly applying the using and combining to produce points, using multiple GPU cores to encode sample points concurrently in the cycle, and sending an ordered sequence of points to a converter.
    Type: Grant
    Filed: December 23, 2022
    Date of Patent: August 20, 2024
    Assignee: Spirent Communications PLC
    Inventors: Felix Michael Krefft, Andrew Charles Baker, Rafal Waclaw Zbikowski, Mark Geoffrey Holbrow
  • Publication number: 20240235979
    Abstract: A testing method is provided for diagnosing faults in a multimedia over coax alliance (MoCA) local area network (LAN) including a WiFi segment. The method including, responsive to selection of a test sequence that includes testing of the WiFi segment, causing display of instructional images that depict how an operator couples the test hardware to a wireless component, invoking the test hardware to perform a test by automatically selecting, in dependence upon a problem generically identified by a user, a test and invoking the test, and automatically evaluating results returned by the test, without user interpretation of the results returned, to determine at least one of (i) whether to report a recommendation to replace/repair an identified component, and (ii) whether to (a) repeat the causing display of instructional images, (b) invoke the test hardware to perform an additional test and (c) automatically evaluate results returned by the additional test.
    Type: Application
    Filed: December 28, 2023
    Publication date: July 11, 2024
    Applicant: Spirent Communications, Inc.
    Inventors: Douglas Grinkemeyer, David Dailey
  • Patent number: 12021729
    Abstract: The frame sequence table (FST) architecture disclosed here partitions an FST stored in the Block RAM on an FPGA into at least two tables for emulating frame sequences for testing network equipment by providing more accurate emulations of network environments. In some implementations, one FST (the primary FST) provides frame listings for high data rate streams, while the other FST provides low data rate streams (the “slow” FST, or SFST). Data compression techniques may be used for the primary FST, allowing emulation of high frame rates using multiple repetitions of frames, while the separation of low frequency streams into the SFST (along with residuals from the primary FST), allows them to be represented accurately when mixed into the final data stream in the output port. A “ping-pong” state machine implemented in firmware governs the selection of data streams from the primary FST and SFST into the output data flow.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: June 25, 2024
    Assignee: Spirent Communications, Inc.
    Inventors: Jocelyn Kunimitsu, Wade Teruya
  • Patent number: 12013777
    Abstract: Disclosed is a method of efficient testing by selective UI interaction, through test script sections including setup, execution and verification, applied to an AUT that operates in both API mode and UI)mode, including providing a test environment that, when testing the UI mode of the AUT, defaults to ignoring the UI mode during setup and supplying setup values stored in a file directly to an API without rendering or interacting with UI elements in the setup section of the script. The method includes encountering an override directive in the setup section of the test script, which mandates interaction with a specified UI element in the setup section, and responsive to the directive, overriding of the default of ignoring the specified UI element in the setup section, rendering the specified UI element, and applying a bot to interact with and supply setup values from the file to the specified UI element.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: June 18, 2024
    Assignee: Spirent Communications, Inc.
    Inventors: Andrea Holt, Saif Ahmed, Alireza Akbari McQuee
  • Patent number: 11960001
    Abstract: The disclosed technology teaches testing an autonomous vehicle: shielding a GNSS receiving antenna of the vehicle from ambient GNSS signals while the vehicle is under test and supplanting the ambient GNSS signals with simulated GNSS signals. Testing includes using a GNSS signal generating system: receiving the ambient GNSS signals using an antenna of the system and determining a location and acceleration of the vehicle from the GNSS signals, accessing a model of an augmented environment that includes multi-pathing and obscuration of the GNSS signals along a test path, based on the determined location—generating the simulated GNSS signals to feed to the vehicle, in real time—simulating at least one constellation of GNSS satellite sources modified according to the augmented environment, based on the determined location, and feeding the simulated signals to a receiver in the vehicle, thereby supplanting ambient GNSS as the autonomous vehicle travels along the test path.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: April 16, 2024
    Assignee: Spirent Communications, plc
    Inventors: Colin Richard Ford, Mark Geoffrey Holbrow, Steve Hickling, Mark Hunter, Guy Buesnel, Neil Bennett, Daniel Martin
  • Publication number: 20240103181
    Abstract: Disclosed is a method of providing DOP forecasts for LEO navigation for routing of vehicles, aircraft, alerting humans in vehicles, or wireless devices, and bandwidth forecasts for LEO communications. The method includes accessing a 3D map of an area including structure solids and generating cuboids in spaces not contained in the structure solids; and iteratively over time increments, calculating LEO satellites visible from the cuboids using the map and, using at least the calculated visibility, determining forecasts for the cuboids at the time increments. Also included is compressing the determined forecast spatially and temporally; and distributing the compressed DOP forecast via a CDN, responsive to queries from requestors. Systems of the requestors can take into account the forecast for routing vehicles or alerting humans in vehicles to a predicted navigation impairment. Risk analysis is applied to improving computation and distribution of forecasts. Forecasts are applied to satellite deployment.
    Type: Application
    Filed: September 15, 2023
    Publication date: March 28, 2024
    Applicant: Spirent Communications Plc
    Inventors: Jeremy C. BENNINGTON, Paul HANSEN, Esther ANYAEGBU, Samuel NARDONI, Matthew POTTLE
  • Publication number: 20240094402
    Abstract: Disclosed is a method of providing DOP forecasts for LEO navigation for routing of vehicles, aircraft, alerting humans in vehicles, or wireless devices, and bandwidth forecasts for LEO communications. The method includes accessing a 3D map of an area including structure solids and generating cuboids in spaces not contained in the structure solids; and iteratively over time increments, calculating LEO satellites visible from the cuboids using the map and, using at least the calculated visibility, determining forecasts for the cuboids at the time increments. Also included is compressing the determined forecast spatially and temporally; and distributing the compressed DOP forecast via a CDN, responsive to queries from requestors. Systems of the requestors can take into account the forecast for routing vehicles or alerting humans in vehicles to a predicted navigation impairment. Risk analysis is applied to improving computation and distribution of forecasts. Forecasts are applied to satellite deployment.
    Type: Application
    Filed: September 15, 2023
    Publication date: March 21, 2024
    Applicant: Spirent Communications Plc
    Inventors: Jeremy C. BENNINGTON, Paul HANSEN, Esther ANYAEGBU, Samuel NARDONI, Matthew POTTLE
  • Publication number: 20240014909
    Abstract: The technology includes a method, computer medium, and system for remote testing over-the-air (OTA) audio quality using a test platform positioned at core network, the test platform comprising first and second cellular handsets and bridging logic that interconnects, controls, and bridges the first and second cellular handsets. The method includes triggering the bridging logic. The bridging logic initiates a first call over the first cellular handset to a tester, and initiates a second call over the second cellular handset to a destination, wherein the second call is initiated over-the-air. The bridging logic and the first and second cellular handsets are positioned in a location that causes routing by a cellular network of the first call over a segment under test. The bridging logic bridging audio between the first and the second calls, including relaying audio. The tester determines that the second call was established based on the relayed audio.
    Type: Application
    Filed: March 28, 2023
    Publication date: January 11, 2024
    Applicant: Spirent Communications, Inc.
    Inventors: Mikhail BEYLIN, Ronald ROYER, Dat PHAN, Ehab BAHJAT, In SEO
  • Publication number: 20240015536
    Abstract: The technology includes a method, computer medium, and system for testing audio quality of a transport segment between two core networks. A first virtual test agent (VTA) selects a Mobility Management Engine (MME) corresponding to an eNodeB served by a first core network for routing a second call, through a Serving Gateway (SGW) assigned by the MME for audio communication with a tester terminus. The second call is made from the first VTA to a second VTA at a second core network over a transport-segment-under-test that connects the first and second core networks, So that a tester can evaluate audio quality over the transport-segment-under-test. The first VTA makes a first call to a tester appliance, makes a second call, over the transport-segment-under-test, to the second VTA implementing audio evaluation, by signaling the MME, and bridges the first and second calls by relaying audio during a test of subjective audio quality.
    Type: Application
    Filed: March 28, 2023
    Publication date: January 11, 2024
    Applicant: Spirent Communications, Inc.
    Inventors: Mikhail BEYLIN, Ronald ROYER, Dat PHAN, Ehab BAHJAT, In SEO