Patents Assigned to Spirent Communications
-
Publication number: 20240015536Abstract: The technology includes a method, computer medium, and system for testing audio quality of a transport segment between two core networks. A first virtual test agent (VTA) selects a Mobility Management Engine (MME) corresponding to an eNodeB served by a first core network for routing a second call, through a Serving Gateway (SGW) assigned by the MME for audio communication with a tester terminus. The second call is made from the first VTA to a second VTA at a second core network over a transport-segment-under-test that connects the first and second core networks, So that a tester can evaluate audio quality over the transport-segment-under-test. The first VTA makes a first call to a tester appliance, makes a second call, over the transport-segment-under-test, to the second VTA implementing audio evaluation, by signaling the MME, and bridges the first and second calls by relaying audio during a test of subjective audio quality.Type: ApplicationFiled: March 28, 2023Publication date: January 11, 2024Applicant: Spirent Communications, Inc.Inventors: Mikhail BEYLIN, Ronald ROYER, Dat PHAN, Ehab BAHJAT, In SEO
-
Publication number: 20240014909Abstract: The technology includes a method, computer medium, and system for remote testing over-the-air (OTA) audio quality using a test platform positioned at core network, the test platform comprising first and second cellular handsets and bridging logic that interconnects, controls, and bridges the first and second cellular handsets. The method includes triggering the bridging logic. The bridging logic initiates a first call over the first cellular handset to a tester, and initiates a second call over the second cellular handset to a destination, wherein the second call is initiated over-the-air. The bridging logic and the first and second cellular handsets are positioned in a location that causes routing by a cellular network of the first call over a segment under test. The bridging logic bridging audio between the first and the second calls, including relaying audio. The tester determines that the second call was established based on the relayed audio.Type: ApplicationFiled: March 28, 2023Publication date: January 11, 2024Applicant: Spirent Communications, Inc.Inventors: Mikhail BEYLIN, Ronald ROYER, Dat PHAN, Ehab BAHJAT, In SEO
-
Patent number: 11868360Abstract: The technology disclosed relates to a method for storing and time-correlating real-time and queryable test results of a test of a device under test (DUT). The method includes initiating the test applied to the DUT to collect real-time data from a multitude of data streams for multiple aspects of the DUT, the collected data including counters and fact-type values, the collected data having imperfectly synchronized time bases and the collected data being collected from different sources asynchronously at different times, specifying a recording time interval for recording the data collected among multiple databases, recording data according to the specified recording time interval, such that each piece of the recorded data is associated with a particular time interval, and at a conclusion of the test, correlating the recorded data with the test configuration data about a test state in the respective time intervals.Type: GrantFiled: November 22, 2021Date of Patent: January 9, 2024Assignee: Spirent Communications, Inc.Inventors: David Joyner, Rahul Patel
-
Patent number: 11863420Abstract: A testing method is provided for diagnosing faults in a multimedia over coax alliance (MoCA) local area network (LAN) including a WiFi segment. The method including, responsive to selection of a test sequence that includes testing of the WiFi segment, causing display of instructional images that depict how an operator couples the test hardware to a wireless component, invoking the test hardware to perform a test by automatically selecting, in dependence upon a problem generically identified by a user, a test and invoking the test, and automatically evaluating results returned by the test, without user interpretation of the results returned, to determine at least one of (i) whether to report a recommendation to replace/repair an identified component, and (ii) whether to (a) repeat the causing display of instructional images, (b) invoke the test hardware to perform an additional test and (c) automatically evaluate results returned by the additional test.Type: GrantFiled: February 17, 2022Date of Patent: January 2, 2024Assignee: Spirent Communications, Inc.Inventors: Douglas Grinkemeyer, David Dailey
-
Publication number: 20230409456Abstract: A method of a test controller controlling a test platform to run test applications is provided, wherein an authenticated connection exists between the test platform and a phone home service through which secure tunnel information for the test controller has been obtained. The method including the test controller (i) transmitting an instruction to the test platform over an initiated first secure tunnel between the test platform and the test controller, and (ii) controlling the test platform to perform a requested test using the test application using an established second secure tunnel between (a) the test platform and (b) the test controller.Type: ApplicationFiled: September 5, 2023Publication date: December 21, 2023Applicant: Spirent Communications, Inc.Inventors: David Dailey, Kevin Myers, Daniel Abarbanel, Douglas Grinkemeyer
-
Patent number: 11843535Abstract: The disclosed technology teaches testing a mesh network using new service application level KPIs that extend the TWAMP measurement architecture. A control-client receives and parses a configuration file to populate memory with IP addresses, ports, and test session parameters for disclosed KPIs used to originate two-way test sessions from a first network host; with control-servers and session-reflectors.Type: GrantFiled: October 24, 2022Date of Patent: December 12, 2023Assignee: Spirent Communications, Inc.Inventor: Jyotikumar U. Menon
-
Publication number: 20230388211Abstract: The disclosed technology teaches systems and methods for high fidelity emulation of a Wi-Fi environment for testing with three or more transmitters set to differing output signal strengths. The disclosed method includes using a PCAP file of captured packets from multiple stations with respective source addresses, RF bands, and channels within bands. The captured packets record metadata containing, at least, signal strength and time stamps. The method further includes analyzing the PCAP file to determine pairs of source addresses and channels, evaluating the pairs for signal strength, and allocating the pairs to three or more transmitters based on grouping by at least the channels and the evaluated signal strengths, and using the time stamps on the captured packets, replaying with synchronization over the transmitters at the set output signal strengths. The PCAP file can include packets from multiple protocols, and time-varying pairs with varying signal strength overtime.Type: ApplicationFiled: May 25, 2023Publication date: November 30, 2023Applicant: Spirent Communications, Inc.Inventors: Michael HALEY, David Theodore MOZZONI, II, Fanny MLINARSKY
-
Publication number: 20230379551Abstract: The technology disclosed teaches a method of testing performance of a device-under-test during cloud gaming over a live cellular network. The method comprises instrumenting the device-under-test with at least one instrument app that interacts with a browser on the device-under-test and captures performance metrics from gaming network traffic. The browser and the instrument app can be invoked using a test controller separated from the device-under-test, causing the browser to connect to a gaming simulation over the live cellular network. A segmented gaming image stream is transmitted to the browser, with segmented playing at varying bit rates and image complexity while the instrument app causes the browser to transmit artificial gameplay events to a gaming simulation test server. Performance metrics from the gaming network traffic are captured, as well as gaming images rendered by the browser during the segmented gaming image stream.Type: ApplicationFiled: July 28, 2023Publication date: November 23, 2023Applicant: Spirent Communications, Inc.Inventors: Mithun ASHWATHAPPA, Michael COLLIGAN
-
Patent number: 11824740Abstract: The technology disclosed provides a method of testing handling of HTTPS sessions of a plurality of clients with a plurality of servers by a switching, bridging or routing device (i.e., a DUT), where the testing is conducted by a test system coupled to ports on the DUT. The method includes using client state machines running on at least four processor cores, communicating through the DUT with server state machines running on at least four additional processor cores. The method also includes, for each connection between a client represented by a client state machine and a server represented by a server state machine, setting up an HTTPS session by negotiating an encryption protocol and completing an HTTPS handshake. Further, the method includes following the setup of between 100,000 HTTPS sessions and 10,000,000 HTTPS sessions, conducting a stress test including combining payload data and header information without using the negotiated encryption.Type: GrantFiled: July 19, 2021Date of Patent: November 21, 2023Assignee: Spirent Communications, Inc.Inventors: Kevin Canady, Richard Wank, Xiaohua Wu, Chunsheng Li
-
Publication number: 20230350076Abstract: The disclosed technology for preparing digital samples for synthesis of RF to simulate channels and GNSS satellites using GPUs includes receiving simulated position and velocity of an antenna, dividing the cycle into points to be converted into the synthesized signal, and computing the points. A first LUT includes pseudo random sequences combinable to produce a code that varies over time for encoding the channel, and a second LUT specifies linear combinations of the pseudo random sequences in the first LUT that produce channel codes to produce the digital sample points. Also included is using GPUs to generate the channel code for a point by mapping the channel code and time position, combining the code with data to be encoded, repeatedly applying the using and combining to produce points, using multiple GPU cores to encode sample points concurrently in the cycle, and sending an ordered sequence of points to a converter.Type: ApplicationFiled: December 23, 2022Publication date: November 2, 2023Applicant: Spirent Communications PLCInventors: Felix Michael Krefft, Andrew Charles Baker, Rafal Waclaw Zbikowski, Mark Geoffrey Holbrow
-
Publication number: 20230350072Abstract: Disclosed is incorporating an IQ stream into a test signal for a receiver in motion, configuring a path for the motion of the receiver during simulation, a period of the simulation, a transmitter constellation to emulate, and a path of at least one IQ stream transmitter. Also generating signals emulating the transmitter constellation and conditioning the stream to be merged with the signals, using distance and relative motion between receiver and transmitter to determine delay and Doppler shift between transmitter and receiver in motion, scheduling sampling of the signal, including interpolation among samples of the stream, based on delay and Doppler shift, and synthesizing a conditioned stream from the interpolation between the samples, taking into account signal level of the stream, in addition to delay and shift, and merging the conditioned signal with the signals emulating the transmitter constellation and supplying the merged signals to the receiver during the test.Type: ApplicationFiled: April 29, 2022Publication date: November 2, 2023Applicant: Spirent Communications, PLCInventors: Felix Michael KREFFT, Stephen Nigel BEALES, Mark Geoffrey HOLBROW
-
Patent number: 11802972Abstract: Disclosed is a method of enhancing RTK position resolution using an RTK-enabled GNSS positioning receiver, including receiving an RTK base station signal for differential position calculation, and receiving a forecast assured navigation signal that includes data identifying line-of-sight availability of satellites generating GNSS signals at a position of the GNSS positioning receiver. Also included is excluding from, or reducing the weighting of, GNSS position calculation satellites not identified as line-of-sight available in the forecast assured navigation signal, and computing the GNSS position calculation combining the knowledge of line of sight, or not line of sight, satellites with the RTK base station signal to perform the differential position calculation and to determine an improved calculated position of the GNSS positioning receiver.Type: GrantFiled: March 28, 2022Date of Patent: October 31, 2023Assignee: Spirent Communications PLCInventors: Paul Hansen, Esther Anyaegbu, Jeremy Charles Bennington
-
Publication number: 20230344738Abstract: A method for determining whether clock skew may exist between a sending node and a remote node during two-way network testing (using protocols such as TWAMP), and a computational method for revising measured latency data to compensate for clock differences. The method for compensating for clock skew comprises monitoring the network latency between two nodes during a defined time interval. When clock skew is detected, a flag is set, and, after the time interval has completed, clock skew S is estimated using the minimum latency values for the interval. The recorded latency values for the interval are then revised using the calculated clock skew S, and one-way latency results reported. The improved accuracy can be achieved with only on a few computations after the data have been collected. This a posteriori approach saves on computational resources, which can be at a premium for network testing equipment.Type: ApplicationFiled: April 21, 2023Publication date: October 26, 2023Applicant: Spirent Communications, Inc.Inventors: Timothy John DELLINGER, Joel Padulles Pubill
-
Publication number: 20230333260Abstract: The technology disclosed teaches a method of improving accuracy of a GNSS receiver that has a non-directional antenna, with the receiver sending CDN a request for predictive data for an area that includes the receiver. Responsive to the query, the method includes receiving data regarding LOS visibility for the receiver with respect to individual satellites, and the receiver using the data for satellite selection, for choosing some and ignoring other individual satellites. Also disclosed is using the data to exclude from satellite selection at least one individual satellite based on lack of LOS visibility to the individual satellite. Further disclosed is recognizing and rejecting spoofed GNSS signals received by a GNSS receiver that has a non-directional antenna, in response to a CDN response to a request for predictive data for an area that includes the receiver, with the receiver comparing the data with measures of signals received from individual satellites.Type: ApplicationFiled: July 13, 2021Publication date: October 19, 2023Applicant: Spirent Communications PLCInventors: Jeremy Charles Bennington, Raphael Grech, Dennis Berres, Rafal Zbikowski, Colin Richard Ford, Richard West, Paul Hansen, Arthur Edward Neeves, Esther Anyaegbu, Adam Gleave, Ronald Toh Ming Wong
-
Patent number: 11789161Abstract: The technology disclosed teaches a method of improving accuracy of a GNSS receiver that has a non-directional antenna, with the receiver sending CDN a request for predictive data for an area that includes the receiver. Responsive to the query, the method includes receiving data regarding LOS visibility for the receiver with respect to individual satellites, and the receiver using the data for satellite selection, for choosing some and ignoring other individual satellites. Also disclosed is using the data to exclude from satellite selection at least one individual satellite based on lack of LOS visibility to the individual satellite. Further disclosed is recognizing and rejecting spoofed GNSS signals received by a GNSS receiver that has a non-directional antenna, in response to a CDN response to a request for predictive data for an area that includes the receiver, with the receiver comparing the data with measures of signals received from individual satellites.Type: GrantFiled: July 13, 2021Date of Patent: October 17, 2023Assignee: Spirent Communications PLCInventors: Jeremy Charles Bennington, Raphael Grech, Dennis Berres, Rafal Zbikowski, Colin Richard Ford, Richard West, Paul Hansen, Arthur Edward Neeves, Esther Anyaegbu, Adam Gleave, Ronald Toh Ming Wong
-
Patent number: 11765856Abstract: A fan tray for an enclosure containing devices to be cooled is provided. The fan tray includes a top cover having a top surface and a bottom surface facing opposite the top surface, wherein, when the fan tray is mated to the enclosure, (i) the top surface is exposed relative to outside the enclosure and (ii) the bottom surface is contained within the enclosure, a fan-receiving portion extending from the bottom surface of the top cover and configured to receive one or more fans, and one or more electrical connectors configured to provide electrical power to the one or more fans.Type: GrantFiled: September 2, 2021Date of Patent: September 19, 2023Assignee: Spirent Communications, Inc.Inventors: Frank Dikken, Don Chi Duong
-
Patent number: 11762748Abstract: A method of a test controller controlling a test platform to run test applications is provided, wherein an authenticated connection exists between the test platform and a phone home service through which secure tunnel information for the test controller has been obtained. The method including the test controller (i) generating an instruction to load and prepare a test application, the instruction including a URL for a repository that stores the test application as a component executable on the test platform, (ii) transmitting the generated instruction to the test platform over an initiated first secure tunnel between the test platform and the test controller, and (iii) controlling the test platform to perform a requested test using the test application using an established second secure tunnel between (a) the test platform or the test application and (b) the test controller.Type: GrantFiled: January 14, 2022Date of Patent: September 19, 2023Assignee: Spirent Communications, Inc.Inventors: Douglas Grinkemeyer, David Dailey, Kevin Myers, Daniel Abarbanel
-
Publication number: 20230283387Abstract: Path-loss measurements are determined for a test client device moving along a path in a field test environment in which field Wi-Fi mesh network nodes are distributed. The path-loss measurements are reproduced in a field-to-lab test environment that includes a test client device disposed in an electromagnetically-isolated chamber and field test Wi-Fi mesh network nodes disposed in respective electromagnetically-isolated chambers. The test client device and the field test Wi-Fi mesh network nodes are in wired or wireless communication with each other via signal lines. A programmable attenuator is electrically coupled to each signal line. The attenuation of each programmable attenuator is varied to reproduce the path-loss measurements from the field test environment. Path-loss measurements at the location of each field Wi-Fi mesh network node are also reproduced with the programmable attenuators to reproduce the field Wi-Fi mesh network node configuration.Type: ApplicationFiled: May 15, 2023Publication date: September 7, 2023Applicant: SPIRENT COMMUNICATIONS, INC.Inventors: Janne LINKOLA, Michael HALEY
-
Patent number: 11734134Abstract: The disclosed technology provides resource locators keyed to resource names with failover alternate resource locators keyed to resource positions on user interfaces in a test environment: providing a central repository for resource locators and storing a set of alternative locator expressions for a resource in the central repository. The set includes first resource locators keyed to resource names on UIs and respective second resource locators keyed to resource positions on UIs that can be evaluated when the resource name in the respective first resource locator is invalid. The method invokes a resource location navigator to locate a particular resource using a first resource locator keyed to a resource name on the user interface, automatically invoking the resource location navigator using the second resource locator keyed to the resource position after failure of locating the particular resource using the resource name, and accessing the particular resource using the second resource locator.Type: GrantFiled: January 4, 2022Date of Patent: August 22, 2023Assignee: Spirent Communications, Inc.Inventors: Andrea Holt, Saif Ahmed, Alireza Akbari McQuee
-
Patent number: 11727174Abstract: The disclosed technology teaches simulating new satellite messages for a GNSS simulation, providing a configuration file and programming script file, neither of which is pre-compiled into GNSS simulation code, that specify format for a message for a satellite and message format combination not yet operational or not yet compiled into the GNSS simulation code. Included is reading and applying the configuration file and running a script from the programming script file to generate navigation data for simulating positioning messages during the GNSS simulation and using the navigation data for simulating positioning signals during the GNSS simulation and testing of a GNSS receiver against the satellite and message format combination. The disclosed technology also teaches determining message format and values to use when simulating position signals by combining field format and field data values from a combination of the configuration files, almanac, ephemeris and related data, and the programming script files.Type: GrantFiled: May 23, 2022Date of Patent: August 15, 2023Assignee: Spirent Communications PLCInventors: John W. Wilkinson, Mark Geoffrey Holbrow