Patents Assigned to Stanford Junior University
  • Patent number: 9587032
    Abstract: The present invention provides novel IgE antibodies useful for inhibiting or preventing metastatic cancer. Also provided are methods to inhibit tumor metastasis by modulating the activity of at least one non-tumor cell, treating a patient to inhibit or prevent tumor metastases of a primary solid tumor, treating metastatic carcinoma, reducing metastasis of carcinoma cells, and reducing the growth kinetics of a primary solid tumor or a metastasized cell or tumor.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: March 7, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Joseph A. Mollick, Pearline Teo, Paul J. Utz
  • Patent number: 9590535
    Abstract: A thermionic energy converter is provided that includes an anode, a cathode, where the anode is disposed opposite the cathode, and a suspension, where a first end of the suspension is connected to the cathode and a second end of the suspension is connected to the anode, where the suspension moveably supports the cathode above the anode to form a variable gap between the anode and the cathode, where the variable gap is capable of enabling a variable thermionic current between the anode and the cathode, where the thermionic converter is capable of an AC power output.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: March 7, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Igor Bargatin, Roger T. Howe
  • Patent number: 9587001
    Abstract: Disclosed are knottin peptides containing non-natural amino acids so that they can be formed by chemical conjugation into two or more knottin monomers. The knottin monomers comprise a non-natural amino acid such as an aminooxy residue within the polypeptide sequence. The exemplified dimers were produced by oxime formation between two aldehyde groups present on a polyether linker and an aminooxy functional group that was site-specifically incorporated the knottin. Knottins variants based on EETI (Ecballium elaterium trypsin inhibitor) and AgRP (Agouti-related protein) were engineered to contain integrin-binding loops. These dimers were shown to have increased binding strength to integrins on U87MG tumor cells, achieving significant increases in inhibition of cell adhesion and proliferation. Also disclosed are knottin monomers comprising an aminooxy residue; these may be conjugated to molecules such as doxorubicin.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: March 7, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jennifer R. Cochran, Jun Woo Kim, Frank V. Cochran
  • Patent number: 9588254
    Abstract: A photonic crystal (PC) device including one or more resonant optical structures defined by the photonic crystal structure is affixed to the end face of an optical fiber. The PC device is fabricated on a separate substrate, and then affixed to the fiber end face. This transfer can be facilitated by device templates which are laterally supported by tabs after an undercut etch. The tabs can be designed to break during transfer to the fiber, thereby facilitating transfer. Registration marks and/or the use of device templates having the same diameter as the fiber can be used to provide lateral alignment of the fiber to the resonant optical structures. Such alignment may be needed to provide optical coupling between the fiber and the resonant optical structures.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: March 7, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Gary Shambat, Jelena Vuckovic
  • Patent number: 9588122
    Abstract: The present disclosure provides methods of treating cancer and modifying a cancer treatment for a cancer with an anti-EGFR drug by creating PRDX6 expression profiles and using the profiles to evaluate and optionally modify treatment. The present disclosure also provides assays and systems for assessing sensitivity of a cancer to an anti-EGFR therapy.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: March 7, 2017
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Edwin Chang, Lingyun Xu, Nick Hughes, Carsten H. Nielsen, Sanjiv S. Gambhir, Parag Mallick, Arutselvan Natarajan
  • Publication number: 20170064211
    Abstract: Aspects of the present disclosure are directed to apparatuses, systems and methods involving imaging providing pixel intensity ratios using circuitry. According to an example embodiment, an apparatus includes a photosensor array having an array of sensors and a circuitry. Each sensor of the photosensor array provides a signal value for a pixel that is indicative of an intensity of light detected. Further, the circuitry responds to the signal values from a plurality of sensors of the photosensor array, by converting signals indicative of a ratio of pixel intensity values to a digital signal that characterize at least an edge of an object corresponding to or associated with the intensity of the detected light. The circuitry provides digital signals, each indicative of a ratio of pixel intensity values, for respective sensors of the photosensor array.
    Type: Application
    Filed: February 27, 2015
    Publication date: March 2, 2017
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Alex B. Omid-Zohoor
  • Publication number: 20170059559
    Abstract: C1q is shown to be expressed in neurons, where it acts as a signal for synapse elimination. Methods are provided for protecting or treating an individual suffering from adverse effects of synapse loss. These findings have broad implications for a variety of clinical conditions, including Alzheimer's disease.
    Type: Application
    Filed: November 11, 2016
    Publication date: March 2, 2017
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ben A. Barres, Beth A. Stevens
  • Patent number: 9579349
    Abstract: Intravenous ferumoxytol is used to effectively label mesenchymal stem cells (MSCs) in vivo and is used for in vivo tracking of stem cell transplants with magnetic resonance (MR) imaging. The method eliminates risk of contamination and biologic alteration of MSCs associated with ex-vivo-labeling procedures.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: February 28, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Heike E. Daldrup-Link
  • Patent number: 9583702
    Abstract: Provided is a phase change memory device including a graphene layer inserted between a lower electrode into which heat flows and a phase change material layer, to prevent the heat from being diffused to an outside so as to efficiently transfer the heat to the phase change material layer, and a method of fabricating the phase change memory device. The phase change memory device includes a lower electrode; an insulating layer formed to enclose the lower electrode; a graphene layer formed on the lower electrode; a phase change material layer formed on the graphene layer and the insulating layer; and an upper electrode formed on the phase change material layer. Since a phase of the phase change material layer is changed at a small amount of driving current, the phase change memory device is fabricated to have a high driving speed and a high integration.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: February 28, 2017
    Assignees: Samsung Electronics Co., Ltd., The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yongsung Kim, Chiyui Ahn, Aditya Sood, Eric Pop, H.-S. Philip Wong, Kenneth E. Goodson, Scott Fong, Seunghyun Lee, Christopher M. Neumann, Mehdi Asheghi
  • Patent number: 9578306
    Abstract: High-resolution three-dimensional imaging of a specimen is facilitated. According to an example embodiment of the present invention, a series of very thin slices from a specimen are serially and robustly arranged on an imaging device such as a microscope slide. The slices are imaged and the images are used to reconstruct a three-dimensional image having high resolution at depths into the specimen. The serial arrangement of the slices facilitates the proper ordering of images for reconstruction. Further, the robust nature of the slice arrangement facilitates treatment of the slices and, in some applications, multiple treatments with corresponding imaging sequences for each treatment. Various embodiments are directed to methods and arrangements for three-dimensional characterization of biological specimen and to data that is accessible and/or executable by a computer for linking different images together in order to characterize such biological specimen in three dimensions.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: February 21, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kristina D. Micheva, Stephen J. Smith
  • Patent number: 9574232
    Abstract: Devices and methods for controlling reversible chemical reactions at solid-liquid interfaces are disclosed. In particular, the invention relates to a method of increasing reaction rates by concentrating a target molecule in a liquid phase in the region of a reactant or ligand immobilized on a solid followed by removal of the liquid phase and replacement with an immiscible phase, such as an immiscible gas or liquid to impede the reverse reaction. Devices for performing this method to increase the rates and degree of completion of kinetically limited ligand binding or nucleic acid hybridization reactions in affinity chromatography and microarray applications are also disclosed.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: February 21, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Crystal Han, Juan G. Santiago, Viktor Shkolnikov
  • Patent number: 9572484
    Abstract: A visual function evaluation is performed using a sequence of interactions with a mobile device. A patient user may perform a variety of visual tests using the mobile device. The mobile device transmits the test results to a remote server implementing analysis of the visual function results using network service. The network service receives the test results, processes the results, and provides the processed results to a healthcare provider. The processed results may include trends of the user's visual function test performance. The healthcare provider, such as a physician, may optimize and administer treatment based on the data. Early detection of changes in visual function can enable the healthcare provider to individualize treatment, helping to prevent vision loss while minimizing visits to the office, discomfort, and expense.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: February 21, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Daniel Palanker, Mark Blumenkranz
  • Publication number: 20170044530
    Abstract: The present invention features compositions and methods relating to tRNA-derived small RNAs (tsRNAs). Provided herein are oligonucleotide compositions that are complementary to tsRNAs, in particular leuCAGtsRNA, and methods of using the oligonucleotides for the regulation of respective tsRNA. Further provided are methods of inducing apoptosis through the inhibition of leuCAGtsRNA.
    Type: Application
    Filed: July 21, 2016
    Publication date: February 16, 2017
    Applicant: The Board of Trustees of the Leland Stanford Junior University, Office of the General Counsel
    Inventors: Mark A. KAY, Hak Kyun Kim, Shengchun Wang
  • Publication number: 20170046833
    Abstract: Methods and systems for three-dimensional (3D) reconstruction of endoscopic data in accordance with embodiments of the invention are described. In one embodiment, a method for processing a plurality of images captured by an endoscope includes preprocessing a plurality of images captured by an endoscope and including at least a portion of an organ. In many embodiments of the invention, the preprocessing includes estimating variations in light intensity within scenes captured by the plurality of images, and generating a set of color-adjusted images based on those variations. The method according to some embodiments of the invention may include generating a 3D point cloud representing points on a surface of the organ based on the set of color-adjusted images, defining a mesh representing the surface of the organ based on the 3D point cloud, and generating a texture of the surface of the organ based on the set of color-adjusted images.
    Type: Application
    Filed: August 10, 2016
    Publication date: February 16, 2017
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kristen L. Lurie, Dimitar V. Zlatev, Joseph Chihping Liao, Audrey K. Bowden, Roland Angst
  • Patent number: 9567432
    Abstract: Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: February 14, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Johan Vilhelm Olsson, Yi-Lin Chung, Russell Jingxian Li, Robert Waymouth, Elizabeth Sattely, Sarah Billington, Curtis W. Frank
  • Publication number: 20170035455
    Abstract: The present application pertains generally to medical systems and methods for creation of an autologous tissue valves within a mammalian body. In some embodiments, a system for creating an endoluminal valve from a blood vessel wall is provided. The system includes a tubular assembly having a longitudinal axis, a proximal end, a distal portion with a distal end, and a first lumen extending from the proximal end to a distal port located proximate the distal portion. The distal portion can have a supporting surface that extends in a longitudinal direction and is offset from a surface of the tubular assembly proximal the distal port. The system can further include a tissue dissection probe disposed within the first lumen.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 9, 2017
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Fletcher T. Wilson, Rhunjay James Yu, Ben Cline
  • Publication number: 20170035450
    Abstract: The present application pertains generally to medical systems and methods for creation of an autologous tissue valves within a mammalian body. In some embodiments, a system for creating an endoluminal valve from a blood vessel wall is provided. The system includes a tubular assembly having a longitudinal axis, a proximal end, a distal portion with a distal end, and a first lumen extending from the proximal end to a distal port located proximate the distal portion. The distal portion can have a supporting surface that extends in a longitudinal direction and is offset from a surface of the tubular assembly proximal the distal port. The system can further include a tissue dissection probe disposed within the first lumen.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 9, 2017
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Fletcher T. Wilson, Rhunjay James Yu, Ben Cline
  • Patent number: 9564286
    Abstract: Provided is a method of forming a thin film of a semiconductor device. The method includes forming a precursor layer on a surface of a substrate by supplying a precursor gas into a chamber, discharging the precursor gas remaining in the chamber to an outside of the chamber by supplying a purge gas into the chamber, supplying a reactant gas into the chamber, generating plasma based on the reactant gas, forming a thin film by a chemical reaction between plasma and the precursor layer and radiating extreme ultraviolet (EUV) light into the chamber, and discharging the reactant gas and the plasma remaining in the chamber by supplying a purge gas into the chamber.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: February 7, 2017
    Assignees: Samsung Electronics Co., Ltd., The Board of Trustees of the Leland Stanford Junior University
    Inventors: Sam Hyung Sam Kim, Andrei Teodor Iancu, Friedrich B. Prinz, Michael C. Langston, Peter Schindler, Ki-Hyun Kim, Stephen P. Walch, Takane Usui
  • Patent number: 9562269
    Abstract: Methods are provided to determine the entire genomic region of a particular HLA locus including both intron and exons. The resultant consensus sequences provides linkage information between different exons, and produces the unique sequence from each of the two genes from the individual sample being typed. The sequence information in intron regions along with the exon sequences provides an accurate HLA haplotype.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: February 7, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Chunlin Wang, Michael N. Mindrinos, Mark M. Davis, Ronald W. Davis, Sujatha Krishnakumar
  • Patent number: 9562087
    Abstract: High affinity PD-1 mimic polypeptides are provided, which (i) comprise at least one amino acid change relative to a wild-type PD-1 protein; and (ii) have an increased affinity for PD-L1 relative to the wild-type protein. Compositions and methods are provided for modulating the activity of immune cells in a mammal by administering a therapeutic dose of a pharmaceutical composition comprising a high affinity PD-1 mimic polypeptide, which blocks the physiological binding interaction between PD-1 and its ligand PD-L1 and/or PD-L2.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: February 7, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aaron Michael Ring, Andrew Kruse, Aashish Manglik, Irving L. Weissman, Roy Louis Maute, Melissa N. McCracken, Sydney Gordon