Patents Assigned to Stats Chippac Ltd.
  • Publication number: 20150259194
    Abstract: A semiconductor device has a first semiconductor die and a modular interconnect structure adjacent to the first semiconductor die. An encapsulant is deposited over the first semiconductor die and modular interconnect structure as a reconstituted panel. An interconnect structure is formed over the first semiconductor die and modular interconnect structure. An active area of the first semiconductor die remains devoid of the interconnect structure. A second semiconductor die is mounted over the first semiconductor die with an active surface of the second semiconductor die oriented toward an active surface of the first semiconductor die. The reconstituted panel is singulated before or after mounting the second semiconductor die. The first or second semiconductor die includes a microelectromechanical system (MEMS). The second semiconductor die includes an encapsulant and an interconnect structure formed over the second semiconductor die.
    Type: Application
    Filed: March 10, 2015
    Publication date: September 17, 2015
    Applicant: STATS ChipPAC, LTD.
    Inventors: Yaojian Lin, Won Kyoung Choi, Kang Chen, Ivan Micallef
  • Patent number: 9136144
    Abstract: A semiconductor wafer contains first semiconductor die. TSVs are formed through the semiconductor wafer. Second semiconductor die are mounted to a first surface of the semiconductor wafer. A first tape is applied to on a second surface of the semiconductor wafer. A protective material is formed over the second die and first surface of the wafer. The protective material can be encapsulant or polyvinyl alcohol and water. The wafer is singulated between the second die into individual die-to-wafer packages each containing the second die stacked on the first die. The protective material protects the wafer during singulation. The die-to-wafer package can be mounted to a substrate. A build-up interconnect structure can be formed over the die-to-wafer package. The protective material can be removed. Underfill material can be deposited beneath the first and second die. An encapsulant is deposited over the die-to-wafer package.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: September 15, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: TaegKi Lim, JaEun Yun, SungYoon Lee
  • Patent number: 9129826
    Abstract: In a semiconductor assembly having stacked elements, discrete bumps made of a polymer such as an electrically nonconductive epoxy are interposed between the upper surface of a substrate and the lower surface of the overhanging part of an elevated element (die or package) with the discrete bump directly under bond sites on the elevated element.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: September 8, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Hun Teak Lee, Jong Kook Kim, Chul Sik Kim, Ki Youn Jang
  • Patent number: 9129978
    Abstract: An integrated circuit packaging system, and a method of manufacture of an integrated circuit packaging system thereof, includes: a singulation substrate having an air vent portion having longitudinal grooves in the air vent portion, the longitudinal grooves all parallel to each other; an integrated circuit die attached to the singulation substrate; and a molding compound on the singulation substrate, on the air vent portion, in a portion of the longitudinal grooves, and on the integrated circuit die.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: September 8, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Jaepil Kim, Seokhyun Kim, Daeup Bae, Jaewon Kim, Jaekang Yoo, Sungpil Hur
  • Patent number: 9129971
    Abstract: A semiconductor device includes a semiconductor die having contact pads disposed over a surface of the semiconductor die, a die attach adhesive layer disposed under the semiconductor die, and an encapsulant material disposed around and over the semiconductor die. The semiconductor device further includes bumps disposed in the encapsulant material around a perimeter of the semiconductor die. The bumps are partially enclosed by the encapsulant material. The semiconductor device further comprises first vias disposed in the encapsulant. The first vias expose surfaces of the contact pads. The semiconductor device further includes a first redistribution layer (RDL) disposed over the encapsulant and in the first vias, and a second RDL disposed under the encapsulant material and the die attach adhesive layer. The first RDL electrically connects each contact pad of the semiconductor die to one of the bumps, and the second RDL is electrically connected to one of the bumps.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: September 8, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Lionel Chien Hui Tay, Henry D. Bathan, Jeffrey D. Punzalan
  • Publication number: 20150249065
    Abstract: A semiconductor device has a first substrate with a plurality of first conductive vias formed partially through the first substrate. A first semiconductor die is mounted over the first substrate and electrically connected to the first conductive vias. A plurality of bumps is formed over the first substrate. A second substrate has a plurality of second conductive vias formed partially through the second substrate. A penetrable encapsulant is deposited over the second substrate. The second substrate is mounted over the first substrate to embed the first semiconductor die and interconnect structure in the penetrable encapsulant. The encapsulant can be injected between the first and second substrates. A portion of the first substrate is removed to expose the first conductive vias. A portion of the second substrate is removed to expose the second conductive vias. A second semiconductor die is mounted over the second substrate.
    Type: Application
    Filed: May 12, 2015
    Publication date: September 3, 2015
    Applicant: STATS ChipPAC, Ltd.
    Inventor: Reza A. Pagaila
  • Patent number: 9123663
    Abstract: A shielded semiconductor device is made by mounting semiconductor die to a first substrate. An encapsulant is formed over the semiconductor die and first substrate. A dicing channel is formed through the encapsulant between the semiconductor die. A hole is drilled in the first substrate along the dicing channel on each side of the semiconductor die. A shielding layer is formed over the encapsulant and semiconductor die. The hole is lined with the shielding layer. The first substrate is singulated to separate the semiconductor die. The first substrate is mounted to a second substrate. A metal pillar is formed in the opening to electrically connect the shielding layer to a ground plane in the second substrate. The metal pillar includes a hook for a mechanically secure connection to the shielding layer. An interconnect structure is formed on the first substrate to electrically connect the semiconductor die to the second substrate.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: September 1, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: OhHan Kim, SeungWon Kim, JoungUn Park
  • Patent number: 9123733
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a sacrificial carrier assembly having a stack interconnector thereover; mounting an integrated circuit having a connector over the sacrificial carrier assembly with the connector over the stack interconnector; dispensing an underfill material between the sacrificial carrier assembly and the integrated circuit with the underfill material substantially free of a void; encapsulating the integrated circuit over the sacrificial carrier assembly and the underfill material; exposing the stack interconnector by removing the sacrificial carrier assembly; and forming a base array over the underfill material and the stack interconnector.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 1, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Rui Huang, Heap Hoe Kuan, Yaojian Lin, Seng Guan Chow
  • Patent number: 9123712
    Abstract: A leadframe system and method of manufacture includes: providing a leadframe having a side rail and a stabilizer, the side rail along a leadframe perimeter and the stabilizer within a rail inner perimeter of the side rail; forming a stabilizer plating layer directly on a bottom side of the stabilizer; and forming an encapsulation surrounded by a mold step, the mold step directly over the stabilizer and the stabilizer plating layer for forming a stiffening structure positioned within the rail inner perimeter of the side rail.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: September 1, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Patent number: 9125332
    Abstract: A semiconductor package includes a semiconductor die with a plurality of solder bumps formed on bump pads. A substrate has a plurality of contact pads each with an exposed sidewall. A solder resist is disposed opening over at least a portion of each contact pad. The solder bumps are reflowed to metallurgically and electrically connect to the contact pads. Each contact pad is sized according to a design rule defined by SRO+2*SRR?2X, where SRO is the solder resist opening, SRR is a solder registration for the manufacturing process, and X is a function of a thickness of the exposed sidewall of the contact pad. The value of X ranges from 5 to 20 microns. The solder bump wets the exposed sidewall of the contact pad and substantially fills an area adjacent to the exposed sidewall. The contact pad can be made circular, rectangular, or donut-shaped.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: September 1, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Rajendra D. Pendse, Youngcheol Kim, TaeKeun Lee, GuiChea Na, GwangJin Kim
  • Publication number: 20150243575
    Abstract: A semiconductor device has a semiconductor die and an encapsulant around the semiconductor die. A fan-in interconnect structure is formed over the semiconductor die while leaving the encapsulant devoid of the interconnect structure. The fan-in interconnect structure includes an insulating layer and a conductive layer formed over the semiconductor die. The conductive layer remains within a footprint of the semiconductor die. A portion of encapsulant is removed from over the semiconductor die. A backside protection layer is formed over a non-active surface of the semiconductor die after depositing the encapsulant. The backside protection layer is formed by screen printing or lamination. The backside protection layer includes an opaque, transparent, or translucent material. The backside protection layer is marked for alignment using a laser. A reconstituted panel including the semiconductor die is singulated through the encapsulant to leave encapsulant disposed over a sidewall of the semiconductor die.
    Type: Application
    Filed: February 20, 2015
    Publication date: August 27, 2015
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Thomas J. Strothmann, Seung Wook Yoon, Yaojian Lin
  • Patent number: 9117812
    Abstract: A semiconductor device has a substrate and first conductive layer formed over the substrate. An insulating layer is formed over the first substrate with an opening over the first conductive layer. A second conductive layer is formed within the opening of the insulating layer. A portion of the second conductive layer is removed to expose a horizontal surface and side surfaces of the second conductive layer below a surface of the insulating layer. The second conductive layer has non-linear surfaces to extend a contact area of the second conductive layer. The horizontal surface and side surfaces can be stepped surfaces or formed as a ring. A third conductive layer is formed over the second conductive layer. A plurality of bumps is formed over the horizontal surface and side surfaces of the second conductive layer. A semiconductor die is mounted to the substrate.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: August 25, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: JaeHyun Lee, KiYoun Jang, KyungHoon Lee, TaeWoo Lee
  • Publication number: 20150228628
    Abstract: A semiconductor device has a first thermally conductive layer formed over a first surface of a semiconductor die. A second surface of the semiconductor die is mounted to a sacrificial carrier. An encapsulant is deposited over the first thermally conductive layer and sacrificial carrier. The encapsulant is planarized to expose the first thermally conductive layer. A first insulating layer is formed over the second surface of the semiconductor die and a first surface of the encapsulant. A portion of the first insulating layer over the second surface of the semiconductor die is removed. A second thermally conductive layer is formed over the second surface of the semiconductor die within the removed portion of the first insulating layer. An electrically conductive layer is formed within the insulating layer around the second thermally conductive layer. A heat sink can be mounted over the first thermally conductive layer.
    Type: Application
    Filed: April 23, 2015
    Publication date: August 13, 2015
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Linda Pei Ee Chua
  • Publication number: 20150228590
    Abstract: A semiconductor device is made by forming a heat spreader over a carrier. A semiconductor die is mounted over the heat spreader with a first surface oriented toward the heat spreader. A first insulating layer is formed over the semiconductor die and heat spreader. A via is formed in the first insulating layer. A first conductive layer is formed over the first insulating layer and connected to the heat spreader through the via and to contact pads on the semiconductor die. The heat spreader extends from the first surface of the semiconductor die to the via. A second insulating layer is formed over the first conductive layer. A second conductive layer is electrically connected to the first conductive layer. The carrier is removed. The heat spreader dissipates heat from the semiconductor die and provides shielding from inter-device interference. The heat spreader is grounded through the first conductive layer.
    Type: Application
    Filed: April 28, 2015
    Publication date: August 13, 2015
    Applicant: STATS ChipPAC, Ltd.
    Inventors: JiHoon Oh, SinJae Lee, JinGwan Kim
  • Publication number: 20150228552
    Abstract: A semiconductor device has a semiconductor die and conductive layer formed over a surface of the semiconductor die. A first channel can be formed in the semiconductor die. An encapsulant is deposited over the semiconductor die. A second channel can be formed in the encapsulant. A first insulating layer is formed over the semiconductor die and first conductive layer and into the first channel. The first insulating layer extends into the second channel. The first insulating layer has characteristics of tensile strength greater than 150 MPa, elongation between 35-150%, and thickness of 2-30 micrometers. A second insulating layer can be formed over the semiconductor die prior to forming the first insulating layer. An interconnect structure is formed over the semiconductor die and encapsulant. The interconnect structure is electrically connected to the first conductive layer. The first insulating layer provides stress relief during formation of the interconnect structure.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 13, 2015
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Pandi C. Marimuthu, Kang Chen, Hin Hwa Goh, Yu Gu, Il Kwon Shim, Rui Huang, Seng Guan Chow, Jianmin Fang, Xia Feng
  • Patent number: 9105647
    Abstract: A semiconductor device has a flipchip semiconductor die mounted to a first substrate using a plurality of first bumps. An opening or plurality of openings is formed in the first substrate in a location central to placement of the flipchip semiconductor die to the first substrate. A plurality of semiconductor die is mounted to a second substrate. The semiconductor die are electrically connected with bond wires. An encapsulant is over the plurality of semiconductor die and second substrate. The second substrate is mounted to the first substrate with a plurality of second bumps. An underfill material is dispensed through the opening in the first substrate between the flipchip semiconductor die and first substrate. The dispensing of the underfill material is discontinued as the underfill material approaches or reaches a perimeter of the flipchip semiconductor die to reduce bleeding of the underfill material. The underfill material is cured.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: August 11, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Junwei Hu, JaeHak Yee, Lin Tan, Wenbin Qu, YuFeng Feng
  • Patent number: 9105620
    Abstract: A system and method of manufacture of an integrated circuit packaging system includes: a leadframe with a conductive layer on a leadframe active side for protecting a lead pad and a routable trace, the leadframe having an overmold recess at a leadframe inactive side; an overmold layer in the overmold recess, the overmold layer exposed between the lead pad and the routable trace for forming the lead pad and routable trace; an encapsulation directly on the conductive layer, the lead pad, the routable trace, and the overmold layer; and an external interconnect at the leadframe inactive side.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: August 11, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua, Asri Yusof
  • Patent number: 9105532
    Abstract: A semiconductor device has a semiconductor die with a first conductive layer formed over the die. A first insulating layer is formed over the die with a first opening in the first insulating layer disposed over the first conductive layer. A second conductive layer is formed over the first insulating layer and into the first opening over the first conductive layer. An interconnect structure is constructed by forming a second insulating layer over the first insulating layer with a second opening having a width less than the first opening and depositing a conductive material into the second opening. The interconnect structure can be a conductive pillar or conductive pad. The interconnect structure has a width less than a width of the first opening. The second conductive layer over the first insulating layer outside the first opening is removed while leaving the second conductive layer under the interconnect structure.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: August 11, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Won Kyoung Choi, Pandi C. Marimuthu
  • Patent number: 9099455
    Abstract: A semiconductor package includes a post carrier having a base plate and plurality of conductive posts. A photosensitive encapsulant is deposited over the base plate of the post carrier and around the conductive posts. The photosensitive encapsulant is etched to expose a portion of the base plate of the post carrier. A semiconductor die is mounted to the base plate of the post carrier within the etched portions of the photosensitive encapsulant. A second encapsulant is deposited over the semiconductor die. A first circuit build-up layer is formed over the second encapsulant. The first circuit build-up layer is electrically connected to the conductive posts. The base plate of the post carrier is removed and a second circuit build-up layer is formed over the semiconductor die and the photosensitive encapsulant opposite the first circuit build-up layer. The second circuit build-up layer is electrically connected to the conductive posts.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: August 4, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Seng Guan Chow, Il Kwon Shim, Heap Hoe Kuan, Rui Huang
  • Publication number: 20150214182
    Abstract: A semiconductor device has a semiconductor die with a die bump pad. A substrate has a conductive trace with an interconnect site. A conductive bump material is deposited on the interconnect site or die bump pad. The semiconductor die is mounted over the substrate so that the bump material is disposed between the die bump pad and interconnect site. The bump material is reflowed without a solder mask around the die bump pad or interconnect site to form an interconnect structure between the die and substrate. The bump material is self-confined within the die bump pad or interconnect site. The volume of bump material is selected so that a surface tension maintains self-confinement of the bump material substantially within a footprint of the die bump pad and interconnect site. The interconnect structure can have a fusible portion and non-fusible portion. An encapsulant is deposited between the die and substrate.
    Type: Application
    Filed: April 9, 2015
    Publication date: July 30, 2015
    Applicant: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse