Patents Assigned to Stats Chippac Ltd.
  • Patent number: 9202769
    Abstract: A semiconductor device has a first semiconductor die and an encapsulant deposited over the first semiconductor die. An interconnect structure is formed over the first semiconductor die and encapsulant. A thermal interface material is formed over the first semiconductor die and encapsulant. A stiffening layer is formed over the first semiconductor die and an edge portion of the encapsulant. Alternatively, an insulating layer is formed adjacent to the first semiconductor die and a stiffening layer is formed over the insulating layer. The stiffening layer includes metal, ferrite, ceramic, or semiconductor material. A heat spreader is disposed over the first semiconductor die and a central portion of the encapsulant. Openings are formed in the heat spreader. A recess is formed in the heat spreader along an edge of the heat spreader. A coefficient of thermal expansion (CTE) of the stiffening layer is less than a CTE of the heat spreader.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: December 1, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Pandi C. Marimuthu, Il Kwon Shim
  • Patent number: 9190340
    Abstract: A semiconductor device has a first semiconductor die containing a low pass filter and baluns. The first semiconductor die has a high resistivity substrate. A second semiconductor die including a bandpass filter is mounted to the first semiconductor die. The second semiconductor die has a gallium arsenide substrate. A third semiconductor die including an RF switch is mounted to the first semiconductor die. A fourth semiconductor die includes an RF transceiver. The first, second, and third semiconductor die are mounted to the fourth semiconductor die. The first, second, third, and fourth semiconductor die are mounted to a substrate. An encapsulant is deposited over the first, second, third, and fourth semiconductor die and substrate. A plurality of bond wires is formed between the second semiconductor die and first semiconductor die, and between the third semiconductor die and first semiconductor die, and between the first semiconductor die and substrate.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: November 17, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: YongTaek Lee, HyunTai Kim, Gwang Kim, ByungHoon Ahn, Kai Liu
  • Patent number: 9190349
    Abstract: An integrated circuit packaging system and method of manufacture thereof including: providing an unplated leadframe having a contact protrusion; depositing a solder resist on the contact protrusion; forming a contact pad and traces by etching the unplated leadframe; applying a trace protection layer on the contact pad and the traces; removing the solder resist; forming a recess in the trace protection layer by etching a top surface of the contact pad to a recess distance below a top surface of the trace protection layer; and depositing an external connector directly on the top surface of the contact pad.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 17, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua, Asri Yusof
  • Patent number: 9190297
    Abstract: A semiconductor device has a substrate and first semiconductor die to the substrate. A plurality of vertically-oriented discrete electrical devices, such as a capacitor, inductor, resistor, diode, or transistor, is mounted over the substrate in proximity to the first semiconductor die. A first terminal of the discrete electrical devices is connected to the substrate. A plurality of bumps is formed over the substrate adjacent to the discrete electrical devices. An encapsulant is deposited over and between the first semiconductor die and substrate. A portion of the bumps and a second terminal of the discrete electrical devices is exposed from the encapsulant. An interconnect structure is formed over a surface of the substrate opposite the first semiconductor die. The semiconductor devices are stackable and electrically connected through the substrate, discrete electrical devices, and bumps. A heat spreader or second semiconductor die can be disposed between the stacked semiconductor devices.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: November 17, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: DaeSik Choi, YeongIm Park, HyungMin Lee
  • Publication number: 20150325553
    Abstract: A semiconductor device has a substrate with a first conductive layer over a surface of the substrate and a plurality of cavities exposing the first conductive layer. A first semiconductor die having conductive TSV is mounted into the cavities of the substrate. A first insulating layer is formed over the substrate and first semiconductor die and extends into the cavities to embed the first semiconductor die within the substrate. A portion of the first insulating layer is removed to expose the conductive TSV. A second conductive layer is formed over the conductive TSV. A portion of the first conductive layer is removed to form electrically common or electrically isolated conductive segments of the first conductive layer. A second insulating layer is formed over the substrate and conductive segments of the first conductive layer. A second semiconductor die is mounted over the substrate electrically connected to the second conductive layer.
    Type: Application
    Filed: July 20, 2015
    Publication date: November 12, 2015
    Applicant: STATS CHIPPAC, LTD.
    Inventors: DongSam Park, YongDuk Lee
  • Patent number: 9184103
    Abstract: A semiconductor device includes a first conductive layer and conductive pillars disposed over the first conductive layer and directly contacting the first conductive layer. The semiconductor device includes an Integrated Passive Device (IPD) mounted to the first conductive layer such that the IPD is disposed between the conductive pillars. The IPD is self-aligned to the first conductive layer, and includes a metal-insulator-metal capacitor disposed over a first substrate and a wound conductive layer forming an inductor disposed over the first substrate. The semiconductor device includes a discrete capacitor mounted over the first conductive layer. The discrete capacitor is electrically connected to one of the conductive pillars. The semiconductor device includes an encapsulant disposed around the IPD, discrete capacitor, and conductive pillars, a first insulation layer disposed over the encapsulant and conductive pillars, and a second conductive layer disposed over the first insulating layer.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 10, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Haijing Cao, Kang Chen, Jianmin Fang
  • Patent number: 9184067
    Abstract: Semiconductor packages with multiple substrates can incorporate apertures or slots between devices to minimize or reduce formation of defects during a molding process. The apertures or slots can be formed adjacent a top substrate in alignment with removable regions adjacent a bottom substrate whereby the apertures or slots can facilitate outflow of materials from cavities between the substrates. The apertures or slots may subsequently be removed in conjunction with the removable regions during a singulation process thereby producing the desired semiconductor packages with improved device reliability and yield.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: November 10, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: KyungHwan Kim, DeokKyung Yang, SeongHun Mun, KeoChang Lee
  • Patent number: 9184139
    Abstract: A semiconductor device has a substrate including a base substrate material and a plurality of conductive vias formed partially though the substrate. A plurality of semiconductor die including a base semiconductor material is disposed over the substrate. A ratio of an encapsulant to a quantity of the semiconductor die is determined for providing structural support for the semiconductor die. An encapsulant is deposited over the semiconductor die and substrate. An amount of the encapsulant is selected based on the determined ratio or based on a total amount of the base substrate material and base semiconductor material. Channels are formed in the encapsulant by removing a portion of the encapsulant in a peripheral region of the semiconductor die. Alternatively, a side surface of the semiconductor die is partially exposed with respect to the encapsulant. A portion of the base substrate material is removed to expose the conductive vias.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: November 10, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Won Kyoung Choi, Pandi C. Marimuthu
  • Patent number: 9184122
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing an interposer having an interposer bottom side and an interposer top side; attaching a base integrated circuit to the interposer bottom side; attaching a lead to the interposer bottom side, the lead adjacent the base integrated circuit and entirely below the interposer; and forming an encapsulation partially covering the lead and exposing the interposer top side.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: November 10, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Wei Qiang Jin, Ding Hui Xu
  • Patent number: 9184104
    Abstract: A semiconductor device has a semiconductor die disposed over the substrate. A conductive via is formed partially through the substrate. An encapsulant is deposited over the semiconductor die and substrate. An insulating layer is formed over the semiconductor die and encapsulant. The insulating layer includes an organic or inorganic insulating material. An adhesive layer is deposited over the insulating layer. The adhesive layer contacts only the insulating layer. A carrier is bonded to the adhesive layer. The insulating layer provides a single CTE across the entire bonding interface between the adhesive layer and semiconductor die and encapsulant. The constant CTE of the insulating layer reduces stress across the bonding interface. A portion of the substrate is removed by backgrinding to expose the conductive via. An insulating layer is formed over the substrate around the conductive via. An interconnect structure is formed over the conductive via.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: November 10, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Lai Yee Chia, Duk Ju Na
  • Patent number: 9177930
    Abstract: A flip chip semiconductor package has a substrate with a plurality of active devices. A contact pad is formed on the substrate in electrical contact with the plurality of active devices. A passivation layer, second barrier layer, and adhesion layer are formed between the substrate and an intermediate conductive layer. The intermediate conductive layer is in electrical contact with the contact pad. A copper inner core pillar is formed by plating over the intermediate conductive layer. The inner core pillar has a rectangular, cylindrical, toroidal, or hollow cylinder form factor. A solder bump is formed around the inner core pillar by plating solder material and reflowing the solder material to form the solder bump. A first barrier layer and wetting layer are formed between the inner core pillar and solder bump. The solder bump is in electrical contact with the intermediate conductive layer.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: November 3, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Yaojian Lin
  • Patent number: 9177897
    Abstract: An integrated circuit packaging system and method of manufacture thereof including: providing a pre-plated leadframe having a contact protrusion and a protective pad on the contact protrusion; forming a contact pad and traces by etching the pre-plated leadframe; applying a trace protection layer on the contact pad, the traces, and the protective pad; removing the protective pad and a portion of the trace protection layer for exposing the contact pad; and depositing an external connector directly on a surface of the contact pad.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 3, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua, Henry Descalzo Bathan
  • Patent number: 9177901
    Abstract: A semiconductor device has a first semiconductor die mounted to a first contact pad on a leadframe or substrate with bumps. A conductive pillar is formed over a second semiconductor die. The second die is mounted over the first die by electrically connecting the conductive pillar to a second contact pad on the substrate with bumps. The second die is larger than the first die. An encapsulant is deposited over the first and second die. Alternatively, the conductive pillars are formed over the substrate around the first die. A heat sink is formed over the second die, and a thermal interface material is formed between the first and second die. An underfill material is deposited under the first semiconductor die. A shielding layer is formed between the first and second die. An interconnect structure can be formed over the second contact pad of the substrate.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: November 3, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Linda Pei Ee Chua
  • Patent number: 9177832
    Abstract: A semiconductor device has a carrier with a semiconductor die mounting area. A plurality of conductive posts is formed in a periphery of the semiconductor die mounting area and in the carrier. A first portion of the carrier is removed to expose a first portion of the plurality of conductive posts such that a second portion of the plurality of conductive posts is embedded in a second portion of the carrier. A first semiconductor die is mounted to the semiconductor die mounting area and between the first portion of the plurality of conductive posts. A first encapsulant is deposited around the first semiconductor die and around the first portion of the plurality of conductive posts. A second portion of the carrier is removed to expose the second portion of the plurality of conductive posts. An interconnect structure is formed over the plurality of conductive posts and the first semiconductor die.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 3, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Zigmund R. Camacho
  • Patent number: 9177848
    Abstract: A semiconductor wafer contains a plurality of die with contact pads disposed on a first surface of each die. Metal vias are formed in trenches in the saw street guides and are surrounded by organic material. Traces connect the contact pads and metal vias. The metal vias can be half-circle vias or full-circle vias. The metal vias are surrounded by organic material. Redistribution layers (RDL) are formed on a second surface of the die opposite the first surface. The RDL and through-hole vias (THV) provide expanded interconnect flexibility to adjacent die. Repassivation layers are formed between the RDL on the second surface of the die for electrical isolation. The die are stackable and can be placed in a semiconductor package with other die. The RDL provide electrical interconnect to the adjacent die. Bond wires and solder bumps also provide electrical connection to the semiconductor die.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: November 3, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Heap Hoe Kuan, Linda Pei Ee Chua
  • Patent number: 9177898
    Abstract: An integrated circuit package system includes: forming a first locking terminal having a first terminal recess with a top portion of the first terminal recess narrower than a bottom portion of the first terminal recess; connecting an integrated circuit and the first locking terminal; and forming a package encapsulation over the integrated circuit and in the first locking terminal.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 3, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Il Kwon Shim, Seng Guan Chow
  • Publication number: 20150311172
    Abstract: A semiconductor device has a semiconductor die with a plurality of composite bumps formed over a surface of the semiconductor die. The composite bumps have a fusible portion and non-fusible portion, such as a conductive pillar and bump formed over the conductive pillar. The composite bumps can also be tapered. Conductive traces are formed over a substrate with interconnect sites having edges parallel to the conductive trace from a plan view for increasing escape routing density. The interconnect site can have a width less than 1.2 times a width of the conductive trace. The composite bumps are wider than the interconnect sites. The fusible portion of the composite bumps is bonded to the interconnect sites so that the fusible portion covers a top surface and side surface of the interconnect sites. An encapsulant is deposited around the composite bumps between the semiconductor die and substrate.
    Type: Application
    Filed: June 19, 2015
    Publication date: October 29, 2015
    Applicant: STATS ChipPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Patent number: 9171795
    Abstract: An integrated circuit packaging system, and a method of manufacture of an integrated circuit packaging system thereof, including: an embedding material on a component; a mask layer on the embedding material; a buried pattern in the mask layer, the outer surface of the buried pattern coplanar with the outer surface of the mask layer, the buried pattern electrically connected to the component; a patterned dielectric on a portion of the buried pattern; and an integrated circuit die on the buried pattern.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: October 27, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Dong Ju Jeon, KyoungHee Park, YoungDal Roh, JinHee Jung
  • Patent number: 9171769
    Abstract: A semiconductor device has a plurality of semiconductor die mounted active surface to a carrier. An encapsulant is deposited over semiconductor die and carrier. Openings are formed through a surface of the encapsulant to divide the encapsulant into discontinuous segments. The openings have straight or beveled sidewalls. The openings can be formed partially through the surface of the encapsulant in an area between the semiconductor die. The openings can be formed partially through the surface of the encapsulant over the semiconductor die. The openings can be formed through the encapsulant in an area between the semiconductor die. A portion of the surface of the encapsulant is removed down to a bottom of the openings. The carrier is removed. An interconnect structure is formed over the encapsulant and the semiconductor die. The encapsulant is cured prior to or after forming the openings.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: October 27, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Seng Guan Chow, Lee Sun Lim, Rui Huang, Xusheng Bao, Ma Phoo Pwint Hlaing
  • Patent number: 9171797
    Abstract: A semiconductor device has a substrate, first passivation layer formed over the substrate, and integrated passive device formed over the substrate. The integrated passive device can include an inductor, capacitor, and resistor. A second passivation layer is formed over the integrated passive device. System components are mounted to the second passivation layer and electrically connect to the second conductive layer. A mold compound is formed over the integrated passive device. A coefficient of thermal expansion of the mold compound is approximately equal to a coefficient of thermal expansion of the system component. The substrate is removed. An opening is etched into the first passivation layer and solder bumps are deposited over the opening in the first passivation layer to electrically connect to the integrated passive device. A metal layer can be formed over the molding compound or first passivation layer for shielding.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: October 27, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Robert C. Frye