Patents Assigned to Stereo Display Inc.
  • Patent number: 11940609
    Abstract: The present invention concerns an image conversion module (09) that comprises an optical interface (10) for establishing an optical path (07). The image conversion module (09) further comprises a beam splitting element (13) on the optical path (07). The beam splitting element (13) is configured for splitting a beam entering the optical interface (10, 11) on the optical path (07) into a first optical subpath (14) and a second optical subpath (16). The image conversion module (09) further comprises a microelectromechanical optical system (17) that is configured for enhancing a depth of field on the first optical subpath (14) that is directed to a first optoelectronic submodule (21). The image conversion module (09) further comprises a second optoelectronic submodule (24) having an electronic sensor (26) on the second optical subpath (16). The second optoelectronic submodule (24) is configured for acquiring additional data on the sample (02).
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: March 26, 2024
    Assignees: CARL ZEISS MICROSCOPY GMBH, SD OPTICS, INC., STEREO DISPLAY, INC
    Inventors: Alexander Gaiduk, Jin Young Sohn, Gyoungil Cho, Cheong Soo Seo
  • Patent number: 11378793
    Abstract: The invention relates first to a camera module for a microscope. The camera module comprises an optical interface for inserting the camera module into an imaging beam path of the microscope, which imaging beam path images a nominal intermediate image. Furthermore, the camera module comprises an electronic image converter and a functional element for changing an intermediate image plane, which functional element is arranged in a beam path of the camera module between the optical interface and the image converter. The camera module also comprises a first optical assembly having an optical power, which first optical assembly is arranged in the beam path between the optical interface and the image converter. According to the invention, a distance between the functional element and the optical interface along the beam path or a distance between the first optical assembly and the optical interface along the beam path can be changed. The invention further relates to a method for operating the camera module.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: July 5, 2022
    Assignees: CARL ZEISS MICROSCOPY GMBH, SD OPTICS, INC., STEREO DISPLAY, INC.
    Inventors: Johannes Winterot, Michael Goelles, Alexander Gaiduk
  • Publication number: 20200341260
    Abstract: The invention concerns a functional module (02) for a microscope. That functional module (02) comprises a mechanical interface (11) for removable mounting the functional module (02) to a module support of the microscope. The functional module (02) further comprises an optical interface (12) for establishing an optical path (09) from an objective (03) of the microscope to the functional module (02). Furthermore, the functional module (02) comprises at least one image sensor (21). The functional module (02) comprises a first and a second microelectromechanical optical system (17, 18). The first microelectromechanical optical system (17) is configured for enhancing a depth of field on a first optical subpath (14) that is directed to the image sensor (21). The second microelectromechanical optical system (18) is configured for enhancing a depth of field on a second optical subpath (16) that is directed to the image sensor (21). The invention further concerns a microscope.
    Type: Application
    Filed: October 23, 2018
    Publication date: October 29, 2020
    Applicants: SD OPTICS, INC., STEREO DISPLAY, INC.
    Inventors: Alexander GAIDUK, Cheong Soo SEO, Gyoungil CHO, Jin Young SOHN, Helmut LIPPERT
  • Publication number: 20190149804
    Abstract: The present invention comprises focus controlled illumination and variable focus optical element. With focus controlled illumination, contrast of the image improves. While reconstructing the three dimensional image with taken data, contrast of the image is very important. Also the contrast of the images is important for the quality of the images. By using focus controlled illumination, surfaces without texture, mirror-like surface, inclined surface can be imaged with this technique and apparatus.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 16, 2019
    Applicant: STEREO DISPLAY, INC.
    Inventors: JIN YOUNG SOHN, GYOUNG IL CHO, CHEONG SOO SEO
  • Publication number: 20190149795
    Abstract: The present invention comprises a line scan camera and a variable focus optical element. With the line scan camera, the three dimensional imaging system of the present invention can overcome the speed problems of the area sensor and the variable focus optical element (Micromirror Array Lens) can change depth as fast as the line scan camera refreshes for the next scan so that the line scan camera and the variable focus optical element can be coupled to control optical depth and the linear scan. With help of the present invention scheme, three dimensional scan can be achieved with only one path scan of the line scan. Scheme, apparatus, and method are disclosed in the present invention.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 16, 2019
    Applicant: STEREO DISPLAY, INC.
    Inventors: JIN YOUNG SOHN, GYOUNG IL CHO, CHEONG SOO SEO
  • Publication number: 20180164562
    Abstract: The present invention utilizes aperture array element and vari-focus optical element in confocal microscopy system. With the aperture array element lateral scanning property can be obtained and with vari-focus optical element axial scanning property can be obtained. Especially Micromirror Array Lens is used as a vari-focus optical element, fast and extended depth of focus scan range can be obtained. Thus the present invention of confocal microscopy with the vari-focus optical element increases scan speed of confocal microscopy system. The confocal microscopy system of the present invention comprises an illumination source, an aperture array element, a vari-focus optical element, an objective lens element, a photosensitive optical sensor device. With these elements, confocal microscopy is performed to get three dimensional images.
    Type: Application
    Filed: October 25, 2016
    Publication date: June 14, 2018
    Applicants: Stereo Display, Inc., SD Optics, Inc.
    Inventors: JINA BYEON, KI BOK KIM, SEUNGPYO HONG, GYOUNG IL CHO, JIN YOUNG SOHN, CHEONG SOO SEO
  • Patent number: 9736346
    Abstract: The present invention provides an imaging system generating a high resolution image using low resolution images taken by a low resolution image sensor. Also, the imaging system generates a wide angle of view image. Enhancement of resolution and enlargement of angle of view are accomplished by optical axis change, utilizing one or more micromirror array lenses without macroscopic mechanical movements of lenses. The imaging system also provides zoom and auto focusing functions using micromirror array lenses.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: August 15, 2017
    Assignees: Stereo Display, Inc, Angstrom, Inc
    Inventors: Sang Hyune Baek, Gyoung Il Cho, Cheong Soo Seo
  • Patent number: 9565340
    Abstract: Automatic focusing system is provided which comprises a mirror or a plurality of mirrors with a translation device. Automatic focusing can be made by the translation of mirror because focal plane can be changed by the translation of mirror. The translation device makes its motion by the electrostatic, electromagnetic and/or electrothermal forces. The mirror is controlled by the electrical signal from the image processor to get an in-focus image. Also the mirror can be controlled discretely. The image shift by translation is compensated by tilt of mirror and/or image processing.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: February 7, 2017
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Cheong Soo Seo, Gyoung Il Cho
  • Patent number: 9505606
    Abstract: A MEMS (micro electro mechanical system) actuator with discretely controlled multiple motions comprises bottom layer, stepper plate, support, and motion plate. The multiple motion of the motion plate is generated by the electrostatically actuated stepper plates and geometrically predetermined supports. By introducing the MEMS actuator with discretely controlled multiple motions, simple motion control can be achieved by digital controlling and only single voltage is needed for motion control of the motion plate.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: November 29, 2016
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Jin Young Sohn, Gyoung II Cho, Cheong Soo Seo
  • Patent number: 8810908
    Abstract: The binoculars of the present invention comprise two optical units; one optical unit for each eye. Each optical unit comprises a first reflector element and a second reflector element, wherein at least one of the reflector elements is a micromirror array reflector. The binoculars of the present invention provide focusing and/or zoom functions without or with minimal macroscopic mechanical lens movement.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: August 19, 2014
    Assignees: Stereo Display, Inc., Angstrom, Inc.
    Inventors: Hye Young Kim, Jin Young Sohn, Gyoung Il Cho, Cheong Soo Seo
  • Patent number: 8687276
    Abstract: An optical system with optical image stabilization of the present invention compensates the movement of the optical system occurring during imaging process using a Micro-Electro Mechanical System (MEMS) unit having an MEMS mirror to stabilize an image of an object formed on an image plane. A micro-actuator with the in-plane translation makes the MEMS mirror have a required rotation to change optical paths of light from the object to the image plane for optical image stabilization. The optical system with optical image stabilization or the present invention provides fast speed, light weight, simple operation, and high image quality image stabilization for the optical system.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: April 1, 2014
    Assignees: Stereo Display, Inc, Angstrom, Inc
    Inventors: Gyoung Il Cho, Hye Young Kim, Cheong Soo Seo
  • Patent number: 8622557
    Abstract: A Micromirror Array Lens with self-tilted micromirrors comprising a plurality of self-tilted micromirrors and configured to form a designed optical surface profile by self-tilted micromirrors. Each self-tilted micromirror comprises a substrate, at least one stiction plate configured to be attracted to the substrate by adhesion force, a micromirror plate having a reflective surface, coupled to the stiction plate elastically and configured to have a required motion when the stiction plate is attracted to the substrate, and at least one pivot structure disposed between the substrate and the micromirror plate and configured to provide a tilting point or area for the motion of the micromirror plate. The designed optical surface profile determines the required motion of the micromirror plate and a surface profile shape memory is built in the structure of the micro-mechanical elements of the self-tilted micromirrors so that each micromirror plate has the required motion.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: January 7, 2014
    Assignees: Stereo Display, Inc., Angstrom Inc.
    Inventors: Gyoung Il Cho, Jin Young Sohn, Hye Young Kim, Cheong Soo Seo
  • Patent number: 8345146
    Abstract: The present invention provides an automatic focus imaging system comprising a lens unit, an image sensor, and a Micro-Electro-Mechanical System (MEMS) unit fabricated by microfabrication technology to improve the portability and focusing speed of the automatic focus imaging system. The MEMS unit for automatic focusing comprises a substrate having a control circuitry, at least one reflective surface movably connected to the substrate, and at least one actuation unit comprising a micro-actuator having a large in-plane translation and at least one micro-converter configured to convert the large in-plane translation of the micro-actuator to the large out-of-plane translation of the reflective surface. The MEMS unit changes a distance between lens unit and the image sensor by controlling the out-of-plane translation of the reflective surface in order to form an in-focus image on the image sensor.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: January 1, 2013
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Gyoung Il Cho, Hye Young Kim, Cheong Soo Seo
  • Publication number: 20120133761
    Abstract: An uneven area inspection system of the present invention comprises a patterned panel comprising a panel, wherein the panel have a surface on which a pattern is formed, an object with at least one surface reflecting light from the patterned panel, an imaging unit optically coupled to the patterned panel and the object and configured to capture the image of the patterned panel reflected by the surface of the object, and an image processing unit configured to process the captured image to compare the pattern in the patterned panel and the pattern in the captured image. The object can have uneven area and the uneven area of the object is inspected by comparing the pattern in the patterned panel and the pattern in the captured image.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Applicants: ANGSTROM, INC., STEREO DISPLAY, INC.
    Inventors: Gyoung Il Cho, Hye Young Kim, Cheong Soo Seo
  • Patent number: 8049776
    Abstract: The present invention provides a three-dimensional camcorder comprising a three-dimensional imaging system acquiring the three-dimensional image information of an object and a three-dimensional viewfinder displaying three-dimensional image using at least one variable focal length micromirror array lens.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: November 1, 2011
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Gyoung Il Cho, Cheong Soo Seo
  • Publication number: 20110181955
    Abstract: An optical system with optical image stabilization of the present invention comprises at least one movement determination unit determining a movement of the optical system, a control circuitry generating a movement compensation signal using the movement information of the optical system from the movement determination unit, and a Micro-Electro Mechanical System (MEMS) unit made by microfabrication technology and controlled by the control circuitry with the movement compensation signal 32C to stabilize an image of an object formed on the image plane. The MEMS unit comprises a substrate, an MEMS mirror movably connected to the substrate and configured to have a motion comprising a rotation, and at least one actuation unit configured to actuating the MEMS mirror.
    Type: Application
    Filed: January 22, 2010
    Publication date: July 28, 2011
    Applicants: STEREO DISPLAY, INC., ANGSTROM, INC.
    Inventors: Gyoung ll Cho, Hye Young Kim, Cheong Soo Seo
  • Publication number: 20110075015
    Abstract: The present invention provides an automatic focus imaging system comprising a lens unit, an image sensor, and a Micro-Electro-Mechanical System (MEMS) unit fabricated by microfabrication technology to improve the portability and focusing speed of the automatic focus imaging system. The MEMS unit for automatic focusing comprises a substrate having a control circuitry, at least one reflective surface movably connected to the substrate, and at least one actuation unit comprising a micro-actuator having a large in-plane translation and at least one micro-converter configured to convert the large in-plane translation of the micro-actuator to the large out-of-plane translation of the reflective surface. The MEMS unit changes a distance between lens unit and the image sensor by controlling the out-plane translation of the reflective surface in order to form in-focus mage on the image sensor.
    Type: Application
    Filed: September 29, 2009
    Publication date: March 31, 2011
    Applicants: STEREO DISPLAY, INC., ANGSTROM, INC.
    Inventors: Gyoung Il Cho, Hye Young Kim, Cheong Soo Seo
  • Patent number: 7898144
    Abstract: A multi-step microactuator is provided with the multiple supports in a stepper plate to give multi-step displacement to a controlled object. The microactuator has advantages such that multiple motion can be applied to the controlled object and that the object can be controlled in a low driving voltage and that simple motion control is applied by digital controlling and that the degrees of freedom in motion of the object can be chosen by the number of the stepper plate and that only single voltage is needed for driving the micromirror motion. With many advantages, the multi-step microactuator provides a solution to overcome the difficulties in controlling multi-step motion.
    Type: Grant
    Filed: February 4, 2006
    Date of Patent: March 1, 2011
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Cheong Soo Seo, Gyoung Il Cho, Sang Hyune Baek
  • Patent number: 7777959
    Abstract: The present invention provides a Micromirror Array Lens (MMAL) with fixed focal length to reproduce a designed surface having optical focusing power. The micro mechanical structures with surface profile shape memory are fabricated and released after fabrication. Each micromirror in the MMAL has its own motion by stiction force and/or electrostatic force while and/or after the releasing process. Once the designed surface is formed, the MMAL has an optical power as a lens.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: August 17, 2010
    Assignees: Angstrom, Inc., Stereo Display. Inc.
    Inventors: Jin Young Sohn, Cheong Soo Seo, Gyoung Il Cho
  • Patent number: 7768571
    Abstract: An optical tracking system using a variable focal length lens includes at least one camera system, and the at least one camera system includes an objective lens system, configured to receive an object image, and at least one micromirror array lens, optically coupled to the objective lens system, configured to focus the object image received by the objective lens system onto an image sensor. The image sensor is optically coupled to the micromirror array lens, configured to receive the focused object image from the micromirror array lens and to sense the focused object image. The advantages of the present invention include ability to rapidly change the focal length and optical axis of a camera system, allowing for high-resolution, wide-angle imaging.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: August 3, 2010
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Tae Hyeon Kim, Gyoung Il Cho, Cheong Soo Seo