Patents Assigned to STIMWAVE TECHNOLOGIES INCORPORATED
  • Patent number: 11672488
    Abstract: A wirelessly powered implantable stimulator device includes one or more antenna configured to receive an input signal non-inductively from an external antenna, the input signal containing (i) electrical energy to operate the implantable stimulator device and (ii) configuration data according to which a pulse-density modulation (PDM) encoded stimulus waveform signal is retrieved to synthesize a desired stimulation waveform; a circuit coupled to the one or more antenna; and one or more electrodes coupled to the circuit and configured to apply the desired stimulation waveform to neural tissue, wherein the circuit is configured to: rectify the input signal received at the one or more antennas non-inductively; extract the electrical energy and the configuration data from the input signal; and in accordance with the extracted configuration data, retrieve the pulse-density modulation (PDM) signal to synthesize the desired stimulation waveform therefrom.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: June 13, 2023
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Bertan Bakkaloglu, Chad David Andresen
  • Patent number: 11672990
    Abstract: A headset for positioning an electronic device against a head of a patient includes a flexible frame configured to surround a portion of the head, the flexible frame defining an interior channel and an exterior slot, a curved structure configured to grasp an ear of the patient, the curved structure being movable within the interior channel of the flexible frame for accommodating a size of the head, and a mount including a support base to which the electronic device can be attached, the mount being slidable along the exterior slot of the flexible frame to position the electronic device along the head.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: June 13, 2023
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad David Andresen
  • Patent number: 11583683
    Abstract: A wearable device for facilitating neurophysiological treatment of a patient harboring an implanted neural stimulator is provided. The wearable device includes a transmitting antenna configured to accept one or more input signals and to transmit one or more electromagnetic signals to a neural stimulator that is implanted in a patients body. The wearable device further includes a control circuitry configured to provide the one or more input signals to the transmitting antenna. The wearable device further includes a battery that provides electrical power to at least the control circuitry. The wearable device is configured to be worn outside the patient's body.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: February 21, 2023
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Elizabeth Greene, Chad Andresen
  • Patent number: 11541238
    Abstract: An antenna assembly includes a metal layer configured to emit linearly polarized electromagnetic energy to a receiving antenna implanted underneath a subject's skin; and a feed port configured to connect the antenna assembly to a signal generator such that the antenna assembly receives an input signal from the signal generator and then transmits the input signal to the receiving dipole antenna, wherein the antenna assembly is less than 200 um in thickness, and wherein the metal layer is operable as a dipole antenna with a reflection ratio of at least 6 dB, the reflection ratio corresponding to a ratio of a transmission power of the antenna assembly in transmitting the input signal and a reflection power seen by the antenna assembly resulting from electromagnetic emission of the input signal.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: January 3, 2023
    Assignee: Stimwave Technologies Incorporated
    Inventors: Chad David Andresen, Richard LeBaron, Laura Tyler Perryman
  • Patent number: 11439832
    Abstract: An implantable electronic device includes a flexible circuit board, one or more circuit components attached to the flexible circuit board and configured to convert electrical energy into electrical pulses, and one or more electrodes attached to the flexible circuit board without cables connecting the electrodes to each other or to the flexible circuit board, the one or more electrodes configured to apply the electrical pulses to a tissue adjacent the implantable electronic device.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: September 13, 2022
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Graham Patrick Greene, Benjamin Speck, Patrick Larson, Paul Lombard
  • Patent number: 11426584
    Abstract: Some implementations provide a method for treating craniofacial pain in a patient, the method including: placing a wirelessly powered passive device through an opening into a target site in a head or neck region of the patient's body, the wirelessly powered passive device configured to receive an input signal non-inductively from an external antenna; positioning the wirelessly powered passive device adjacent to or near a nerve at the target site; and causing neural modulation to the nerve through one or more electrodes on the wirelessly powered passive device.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: August 30, 2022
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Patent number: 11426586
    Abstract: An integrated circuit includes: a radio-frequency (RF) to direct current (DC) rectifying circuit coupled to one or more antenna on an implantable wirelessly powered device, the rectifying circuit configured to: rectify an input RF signal received at the one or more antennas and from an external controller through electric radiative coupling; and extract DC electric power and configuration data from the input RF signal; a logic control circuit connected to the rectifying circuit and a driving circuit, the logic control circuit configured to: generate a current for the driving circuit solely using the extracted DC electrical power; in accordance with the extracted configuration data, set polarity state information for each electrode; and a driving circuit coupled to one or more electrode, the driving circuit comprising current mirrors and being configured to: steer, to each electrode and via the current mirrors, a stimulating current solely from the generated current.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: August 30, 2022
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad David Andresen, Bertan Bakkaloglu
  • Patent number: 11331500
    Abstract: Implementations provide a method that includes: placing a controller device over a surface region of the patient where the implantable wireless stimulation device has been implanted; configuring the controller device to (i) monitor a return loss representing electrical power reflected from the implantable wireless stimulation device to the controller device; (ii) compute a first path loss metric based on a first monitored return loss when the controller device is place over a first location within the surface region; (iii) compute a second path loss metric based on a second monitored return loss when the controller device is over a second location within the surface region; and (iv) generate a feedback to an operator to indicate whether the second path loss is smaller than the first path loss such that the controller device is placed at a location with more electrical energy non-inductively transferred to the implantable wireless stimulation device.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: May 17, 2022
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Richard LeBaron
  • Patent number: 11324957
    Abstract: A passive implantable relay module includes a first coupler arm configured to wirelessly receive electromagnetic energy radiated through electric radiative coupling from a transmitting antenna located outside a subject's body; a second coupler arm; and a connector portion comprising a first metal core and a first dielectric coating surrounding the first metal core, the connector portion configured to connect the first coupler arm to the second coupler arm such that when the passive implantable relay module is implanted inside the subject's body and the transmitting antenna initiates wireless energy transfer to the first coupler arm via non-inductive coupling, electromagnetic waves carrying the electromagnetic energy received at the first coupler arm propagate along the first metal core to arrive at the second coupler arm, where the electromagnetic energy arriving is wirelessly transferred, again via non-inductive coupling, to a receiving antenna on a passive wireless neural stimulator device.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: May 10, 2022
    Assignee: Stimwave Technologies Incorporated
    Inventors: Richard LeBaron, Laura Tyler Perryman
  • Patent number: 11266841
    Abstract: A method of securing an antenna assembly to a wearable article includes positioning a template carrying a first antenna at a desired position on the wearable article worn on a body of a patient. The desired position is in proximity to a wireless tissue stimulator implanted within the body. The method further includes marking a location of the desired position of the template against the wearable article, securing a first attachment feature to the wearable article at a mark located at the desired position, and attaching the antenna assembly to the wearable article at the first attachment feature. The antenna assembly includes a second antenna configured to send a signal carrying electrical energy to the wireless tissue stimulator and a housing carrying the second antenna. The housing includes a second attachment feature configured to engage the first attachment feature for positioning the second antenna adjacent the body.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: March 8, 2022
    Assignee: Stimwave Technologies Incorporated
    Inventors: Gary Perryman, Benjamin Speck
  • Patent number: 11139561
    Abstract: An antenna assembly includes: a wearable antenna including a conductive signal layer having a radiating surface; a feed conductive layer; and an insulating layer in between the conductive signal layer and the feed conductive layer, and wherein the conductive signal layer, the feed conductive layer, and the insulating layer are fabric-based, wherein the wearable antenna is shaped and sized to be embedded in a subject's clothing with sufficient flexibility to be stretched and bent as the subject implanted with a passive implantable stimulator device maintains routine daily activities, and wherein the wearable antenna is electrically tuned and configured to have the radiating surface of the conductive signal layer facing the subject's skin and a feed point of the feed conductive layer connecting to a controller such that the wearable antenna is non-inductively coupled to the implanted passive stimulator device to supply power the passive implantable stimulator device wirelessly and non-inductively.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: October 5, 2021
    Assignee: Stimwave Technologies Incorporated
    Inventors: Richard LeBaron, Laura Tyler Perryman
  • Patent number: 11128049
    Abstract: A patch antenna assembly that includes a signal metal layer configured to emit linearly polarized electromagnetic energy to a receiving antenna implanted up to 12 cm underneath a subject's skin; a signal metal layer substrate on which the signal metal layer substrate is positioned; a ground plane located next to the signal metal layer substrate and further away from the subject's skin; a microstrip and capacitance adjustment pad metal layer substrate located next to the ground plane; and a microstrip and capacitance adjustment pad metal layer next to the microstrip and capacitance adjustment pad metal layer substrate, the microstrip and capacitance adjustment pad metal layer comprising: a capacitance adjustment pad configured to adjust a resonant frequency of the patch antenna assembly; and a microstrip attached to the capacitance adjustment pad and configured to induce the emitted electromagnetic energy to be linearly polarized along a longitudinal direction of the microstrip.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: September 21, 2021
    Assignee: Stimwave Technologies Incorporated
    Inventors: Chad David Andresen, Richard LeBaron, Laura Tyler Perryman
  • Publication number: 20210275813
    Abstract: An implantable wireless lead includes an enclosure, the enclosure housing: one or more electrodes configured to apply one or more electrical pulses to a neural tissue; a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy, the second antenna being physically separate from the implantable neural stimulator lead; one or more circuits electrically connected to the first antenna, the circuits configured to: create the one or more electrical pulses suitable for stimulation of the neural tissue using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes, wherein the enclosure is shaped and arranged for delivery into a subject's body through an introducer or a needle.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 9, 2021
    Applicant: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 11097111
    Abstract: Some implementations provide an implantable wirelessly powered device for implantation in a patient's body, the device including: two or more electrode arrays configured to apply at least one electrical pulse to an excitable tissue, each electrode array including at least one electrode; two or more connector contacts, each integrally wired to a particular electrode array, each configured to drive the at least one electrode of the particular electrode array integrally wired thereto with the at least one electrical pulse and to set a polarity for each of the at least one electrode of the particular electrode array integrally wired thereto; a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy as well as polarity assignment information, the second antenna located outside the patient's body; and one or more circuits electrically connected to the first antenna and the connector contacts, the circuits configured to: crea
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: August 24, 2021
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad David Andresen
  • Patent number: 11027139
    Abstract: A method for treating neurological pain includes inserting an introducer needle of gauge 18 or smaller through a percutaneous incision site on a body, coupling a first mating feature at a distal end of an elongate member of a stylet to a second mating feature of an implantable device that is configured to receive a wireless signal and to generate one or more electrical pulses from the wireless signal for exciting a tissue within the body, advancing the stylet and the implantable device together as an assembly to the tissue within the body through a lumen of the introducer needle, and applying the one or more electrical pulses to one or more electrodes of the implantable device to modulate the tissue within the body.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: June 8, 2021
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Patent number: 10994149
    Abstract: A method and system is presented for an implantable wireless power receiver for use with a medical stimulation or monitoring device. The receiver receives transmitted energy through one or more non-inductive antenna(s), utilizes microelectronics to perform rectification of the received signal for generation of a DC power supply to power an implantable device, and may also utilize microelectronics to provide parameter settings to the device, or stimulating or other waveforms to a tissue.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 4, 2021
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Patent number: 10980998
    Abstract: A method for implanting a wireless neural stimulator device, the method including: inserting a device through on a patient's skin on a posterior side of the patient's neck region, wherein the device includes a proximal end, a distal end, a first opening at the proximal end, a second opening at the distal end, and a lumen extending between the first opening and the second opening; after inserting the device through the patient's skin, advancing the distal end into the epidural space of the patient; inserting the wireless neural stimulator device through the first opening; advancing the wireless neural stimulator from the first opening through the lumen until the wireless neural stimulator exits the second opening and into the patient's epidural space; and advancing the wireless neural stimulator through the epidural space until a target site is reached.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: April 20, 2021
    Assignee: Stimwave Technologies Incorporated
    Inventors: Chad David Andresen, Laura Tyler Perryman
  • Patent number: 10953228
    Abstract: An implantable wireless lead includes an enclosure, the enclosure housing: one or more electrodes configured to apply one or more electrical pulses to a neural tissue; a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy, the second antenna being physically separate from the implantable neural stimulator lead; one or more circuits electrically connected to the first antenna, the circuits configured to: create the one or more electrical pulses suitable for stimulation of the neural tissue using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes, wherein the enclosure is shaped and arranged for delivery into a subject's body through an introducer or a needle.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: March 23, 2021
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 10926084
    Abstract: Some implementations provide a method for modulating excitable tissue in a body of a patient, the method including: placing a wireless implantable stimulator device at a target site in the patient's body, the stimulator device including one or more electrodes; reconfiguring the wireless implantable stimulator device to form an enclosure that substantially surrounds the excitable tissue at the target site with the electrodes on the inside of the enclosure and facing the nerve; and causing electrical impulses to be delivered to the electrodes on the wireless implantable stimulator device such that neural modulation is applied to the excitable tissue substantially surrounded by the enclosure.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: February 23, 2021
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 10737098
    Abstract: An ear-piece assembly includes (i) an antenna portion enclosing a transmitting antenna configured to send one or more input signals containing electrical energy to a passive implantable neural stimulator device such that the passive implantable neural stimulator generates one or more stimulation pulses suitable for stimulating a neural structure in the craniofacial region solely using the electrical energy in the input signals; and (ii) an enclosure coupled to the antenna portion, wherein enclosure is sized and shaped to be mounted on a helix portion of an ear such that, when worn by a patient, weight from the enclosure is distributed over the helix portion of the ear for the enclosure to rest thereon, wherein the enclosure includes (i) a controller module configured to provide the one or more input signals to the transmitting antenna, and (ii) a battery adapted to provide energy to the ear-piece assembly.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: August 11, 2020
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad David Andresen, Graham Patrick Greene