Patents Assigned to STIMWAVE TECHNOLOGIES INCORPORATED
  • Patent number: 10179244
    Abstract: A passive implantable relay module includes a first coupler arm configured to wirelessly receive electromagnetic energy radiated through electric radiative coupling from a transmitting antenna located outside a subject's body; a second coupler arm; and a connector portion comprising a first metal core and a first dielectric coating surrounding the first metal core, the connector portion configured to connect the first coupler arm to the second coupler arm such that when the passive implantable relay module is implanted inside the subject's body and the transmitting antenna initiates wireless energy transfer to the first coupler arm via non-inductive coupling, electromagnetic waves carrying the electromagnetic energy received at the first coupler arm propagate along the first metal core to arrive at the second coupler arm, where the electromagnetic energy arriving is wirelessly transferred, again via non-inductive coupling, to a receiving antenna on a passive wireless neural stimulator device.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: January 15, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Richard LeBaron, Laura Tyler Perryman
  • Publication number: 20140058480
    Abstract: A system, including: an implantable neural stimulator including electrodes, at least one antenna and an electrode interface; a radio-frequency (RF) pulse generator module comprising an antenna module configured to send an input signal to the antenna in the implantable neural stimulator through electrical radiative coupling, the input signal containing electrical energy and polarity assignment information that designates polarity assignments of the electrodes in the implantable neural stimulator; and wherein the implantable neural stimulator is configured to: control the electrode interface such that the electrodes have the polarity assignments designated by the polarity assignment information, create one or more electrical pulses suitable for modulation of neural tissue using the electrical energy contained in the input signal, and supply the electrical pulses to the electrodes through the electrode interface such that the electrodes apply the electrical pulses to the neural tissue with the polarity assignmen
    Type: Application
    Filed: October 31, 2013
    Publication date: February 27, 2014
    Applicant: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Publication number: 20140058481
    Abstract: An implantable neural stimulator method for modulating excitable tissue in a patient including: implanting a neural stimulator within the body of the patient such that one or more electrodes of the neural stimulator are positioned at a target site adjacent to or near excitable tissue; generating an input signal with a controller module located outside of, and spaced away from, the patient's body; transmitting the input signal to the neural stimulator through electrical radiative coupling; converting the input signal to electrical pulses within the neural stimulator; and applying the electrical pulses to the excitable tissue sufficient to modulate said excitable tissue.
    Type: Application
    Filed: October 31, 2013
    Publication date: February 27, 2014
    Applicant: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Publication number: 20130079849
    Abstract: An implementation provides a system that includes: a control module including a first antenna, the control module configured to generate a first radio frequency (RF) signal and transmit the first RF signal using the first antenna; an implantable lead module including a second antenna and at least one electrode configured to stimulate excitable tissue of a subject; and a relay module configured to receive the first RF signal; generate a second RF signal based on the first RF signal, the second RF signal encoding a stimulus waveform to be applied by the at least one electrodes of the implantable lead module to stimulate the excitable tissue of the subject; and transmit the second RF signal to the implantable lead module.
    Type: Application
    Filed: September 17, 2012
    Publication date: March 28, 2013
    Applicant: STIMWAVE TECHNOLOGIES INCORPORATED
    Inventor: Stimwave Technologies Incroporated
  • Publication number: 20130066400
    Abstract: A system includes a controller module, which includes a storage device, a controller, a modulator, and one or more antennas. The storage device is stored with parameters defining a stimulation waveform. The controller is configured to generate, based on the stored parameters, an output signal that includes the stimulation waveform, wherein the output signal additionally includes polarity assignments for electrodes in an implantable, passive stimulation device. The modulator modulates a stimulus carrier signal with the output signal to generate a transmission signal.
    Type: Application
    Filed: August 13, 2012
    Publication date: March 14, 2013
    Applicant: STIMWAVE TECHNOLOGIES INCORPORATED
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Publication number: 20120330384
    Abstract: An implantable neural stimulator includes one or more electrodes, at least one antenna, and one or more circuits connected to the at least one antenna. The one or more electrodes are configured to apply one or more electrical pulses to excitable tissue. The antenna is configured to receive one or more input signals containing polarity assignment information and electrical energy, the polarity assignment information designating polarities for the electrodes. The one or more circuits are configured to control an electrode interface such that the electrodes have the polarities designated by the polarity assignment information; create one or more electrical pulses using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes through the electrode interface so that the one or more electrical pulses are applied according to the polarities designated by the polarity assignment information.
    Type: Application
    Filed: July 30, 2012
    Publication date: December 27, 2012
    Applicant: STIMWAVE TECHNOLOGIES INCORPORATED
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Publication number: 20120283800
    Abstract: An implantable neural stimulator includes one or more electrodes, a dipole antenna, and one or more circuits and does not include an internal power source. The one or more electrodes are configured to apply one or more electrical pulses to neural tissue. The dipole antenna is configured to receive an input signal containing electrical energy utilizing electrical radiative coupling (for example, in the frequency range form 300 MHz to 8 GHz). The one or more circuits are configured to create one or more electrical pulses using the electrical energy contained in the input signal; supply the electrical pulses to the electrodes such the electrical pulses are applied to neural tissue; generate a stimulus feedback signal; and send the feedback to the dipole antenna to transmit to the second antenna through electrical radiative coupling.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 8, 2012
    Applicant: STIMWAVE TECHNOLOGIES INCORPORATED
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen