Patents Assigned to STIMWAVE TECHNOLOGIES INCORPORATED
  • Patent number: 10646164
    Abstract: A wirelessly powered implantable stimulator device includes one or more antenna configured to receive an input signal non-inductively from an external antenna, the input signal containing (i) electrical energy to operate the implantable stimulator device and (ii) configuration data according to which a pulse-density modulation (PDM) encoded stimulus waveform signal is retrieved to synthesize a desired stimulation waveform; a circuit coupled to the one or more antenna; and one or more electrodes coupled to the circuit and configured to apply the desired stimulation waveform to neural tissue, wherein the circuit is configured to: rectify the input signal received at the one or more antennas non-inductively; extract the electrical energy and the configuration data from the input signal; and in accordance with the extracted configuration data, retrieve the pulse-density modulation (PDM) signal to synthesize the desired stimulation waveform therefrom.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: May 12, 2020
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Bertan Bakkaloglu, Chad David Andresen
  • Patent number: 10632314
    Abstract: A computer-assisted method that includes: establishing a communication link between a programming device and a controller device, the controller device wirelessly and non-inductively powering and controlling a passive implantable stimulator device; presenting configuration options to the patient user of the passive implantable stimulator device, the configuration options comprising stimulation waveform parameters for driving the passive implantable stimulator; receiving a specification of the configuration options in response to the presented configuration options; receiving user feedback when the user specified configuration options are transferred to the controller device which, in turn, drives the implantable stimulator device according to the specified configuration options; building, at the programming device, a profile that correlates the user specified configuration options with the corresponding quantitative index of pain; and recommending at least one configuration option based on the profile built f
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: April 28, 2020
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad David Andresen, D. Alan Corbett
  • Patent number: 10541468
    Abstract: An antenna assembly includes: a wearable antenna including a conductive signal layer having a radiating surface; a feed conductive layer; and an insulating layer in between the conductive signal layer and the feed conductive layer, and wherein the conductive signal layer, the feed conductive layer, and the insulating layer are fabric-based, wherein the wearable antenna is shaped and sized to be embedded in a subject's clothing with sufficient flexibility to be stretched and bent as the subject implanted with a passive implantable stimulator device maintains routine daily activities, and wherein the wearable antenna is electrically tuned and configured to have the radiating surface of the conductive signal layer facing the subject's skin and a feed point of the feed conductive layer connecting to a controller such that the wearable antenna is non-inductively coupled to the implanted passive stimulator device to supply power the passive implantable stimulator device wirelessly and non-inductively.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: January 21, 2020
    Assignee: Stimwave Technologies Incorporated
    Inventors: Richard LeBaron, Laura Tyler Perryman
  • Patent number: 10493279
    Abstract: An integrated circuit includes: a radio-frequency (RF) to direct current (DC) rectifying circuit coupled to one or more antenna on an implantable wirelessly powered device, the rectifying circuit configured to: rectify an input RF signal received at the one or more antennas and from an external controller through electric radiative coupling; and extract DC electric power and configuration data from the input RF signal; a logic control circuit connected to the rectifying circuit and a driving circuit, the logic control circuit configured to: generate a current for the driving circuit solely using the extracted DC electrical power; in accordance with the extracted configuration data, set polarity state information for each electrode; and a driving circuit coupled to one or more electrode, the driving circuit comprising current mirrors and being configured to: steer, to each electrode and via the current mirrors, a stimulating current solely from the generated current.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: December 3, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad David Andresen, Bertan Bakkaloglu
  • Patent number: 10471262
    Abstract: An implantable neural stimulator method for modulating excitable tissue in a patient including: implanting a neural stimulator within the body of the patient such that one or more electrodes of the neural stimulator are positioned at a target site adjacent to or near excitable tissue; generating an input signal with a controller module located outside of, and spaced away from, the patient's body; transmitting the input signal to the neural stimulator through electrical radiative coupling; converting the input signal to electrical pulses within the neural stimulator; and applying the electrical pulses to the excitable tissue sufficient to modulate said excitable tissue.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: November 12, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 10463858
    Abstract: Some implementations provide a method for treating craniofacial pain in a patient, the method including: placing a wirelessly powered passive device through an opening into a target site in a head or neck region of the patient's body, the wirelessly powered passive device configured to receive an input signal non-inductively from an external antenna; positioning the wirelessly powered passive device adjacent to or near a nerve at the target site; and causing neural modulation to the nerve through one or more electrodes on the wirelessly powered passive device.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 5, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Patent number: 10463862
    Abstract: A passive implantable relay module includes a first coupler arm configured to wirelessly receive electromagnetic energy radiated through electric radiative coupling from a transmitting antenna located outside a subject's body; a second coupler arm; and a connector portion comprising a first metal core and a first dielectric coating surrounding the first metal core, the connector portion configured to connect the first coupler arm to the second coupler arm such that when the passive implantable relay module is implanted inside the subject's body and the transmitting antenna initiates wireless energy transfer to the first coupler arm via non-inductive coupling, electromagnetic waves carrying the electromagnetic energy received at the first coupler arm propagate along the first metal core to arrive at the second coupler arm, where the electromagnetic energy arriving is wirelessly transferred, again via non-inductive coupling, to a receiving antenna on a passive wireless neural stimulator device.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: November 5, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Richard LeBaron, Laura Tyler Perryman
  • Patent number: 10426960
    Abstract: An antenna assembly includes a metal layer configured to emit linearly polarized electromagnetic energy to a receiving antenna implanted underneath a subject's skin; and a feed port configured to connect the antenna assembly to a signal generator such that the antenna assembly receives an input signal from the signal generator and then transmits the input signal to the receiving dipole antenna, wherein the antenna assembly is less than 200 um in thickness, and wherein the metal layer is operable as a dipole antenna with a reflection ratio of at least 6 dB, the reflection ratio corresponding to a ratio of a transmission power of the antenna assembly in transmitting the input signal and a reflection power seen by the antenna assembly resulting from electromagnetic emission of the input signal.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: October 1, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Chad David Andresen, Richard LeBaron, Laura Tyler Perryman
  • Patent number: 10420947
    Abstract: A system, including: an implantable neural stimulator including electrodes, at least one antenna and an electrode interface; a radio-frequency (RF) pulse generator module comprising an antenna module configured to send an input signal to the antenna in the implantable neural stimulator through electrical radiative coupling, the input signal containing electrical energy and polarity assignment information that designates polarity assignments of the electrodes in the implantable neural stimulator; and wherein the implantable neural stimulator is configured to: control the electrode interface such that the electrodes have the polarity assignments designated by the polarity assignment information, create one or more electrical pulses suitable for modulation of neural tissue using the electrical energy contained in the input signal, and supply the electrical pulses to the electrodes through the electrode interface such that the electrodes apply the electrical pulses to the neural tissue with the polarity assignmen
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: September 24, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Publication number: 20190247660
    Abstract: An implantable wireless lead includes an enclosure, the enclosure housing: one or more electrodes configured to apply one or more electrical pulses to a neural tissue; a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy, the second antenna being physically separate from the implantable neural stimulator lead; one or more circuits electrically connected to the first antenna, the circuits configured to: create the one or more electrical pulses suitable for stimulation of the neural tissue using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes, wherein the enclosure is shaped and arranged for delivery into a subject's body through an introducer or a needle.
    Type: Application
    Filed: February 14, 2019
    Publication date: August 15, 2019
    Applicant: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 10369369
    Abstract: A device for providing an implantable lead with wireless energy, the device including: a housing configured for implantation in a patient's body; one or more non-inductive antennas substantially enclosed within the housing and configured to receive electromagnetic energy radiated from a source located outside of the patient's body; electronic circuitry coupled to each of the one or more non-inductive antennas and configured to extract electric power and excitation waveforms from the radiated electromagnetic energy as received by the one or more non-inductive antennas; and one or more connection pads substantially enclosed within the housing, wherein the connection pads are configured to couple with one or more electrodes in the implantable lead and form an electric connection over which the connection pads provide the extracted excitation waveforms from the electronic circuit to the electrodes in the implantable lead, the implantable lead being separate from the device.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: August 6, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Patent number: 10369365
    Abstract: Some computer-assisted methods include: presenting configuration options to a user of the implanted stimulator device, the configuration options comprising stimulation parameters for the implanted stimulator; receiving a user specification of the configuration options in response to the presented configuration options; receiving user feedback when the user specified configuration options are implemented at the implanted stimulator device, the user feedback comprising a quantitative index of pain resulting from implementing the user specified configuration options on the implanted stimulator device; building a user profile for the user based on the user specified configuration options and the user feedback, the user profile including the user specified configuration options as well as the corresponding quantitative index of pain; and selecting at least one configuration option based on the user profile when the configuration options are subsequently presented to the user for a later treatment.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: August 6, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad David Andresen
  • Patent number: 10315039
    Abstract: A system includes a controller module, which includes a storage device, a controller, a modulator, and one or more antennas. The storage device is stored with parameters defining a stimulation waveform. The controller is configured to generate, based on the stored parameters, an output signal that includes the stimulation waveform, wherein the output signal additionally includes polarity assignments for electrodes in an implantable, passive stimulation device. The modulator modulates a stimulus carrier signal with the output signal to generate a transmission signal.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: June 11, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 10293169
    Abstract: A wearable device for facilitating neurophysiological treatment of a patient harboring an implanted neural stimulator is provided. The wearable device includes a transmitting antenna configured to accept one or more input signals and to transmit one or more electromagnetic signals to a neural stimulator that is implanted in a patient's body. The wearable device further includes a control circuitry configured to provide the one or more input signals to the transmitting antenna. The wearable device further includes a battery that provides electrical power to at least the control circuitry. The wearable device is configured to be worn outside the patient's body.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: May 21, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Elizabeth Greene, Chad Andresen
  • Patent number: 10272239
    Abstract: A method for implanting a wireless neural stimulator device, the method including: inserting a device through on a patient's skin on a posterior side of the patient's neck region, wherein the device includes a proximal end, a distal end, a first opening at the proximal end, a second opening at the distal end, and a lumen extending between the first opening and the second opening; after inserting the device through the patient's skin, advancing the distal end into the epidural space of the patient; inserting the wireless neural stimulator device through the first opening; advancing the wireless neural stimulator from the first opening through the lumen until the wireless neural stimulator exits the second opening and into the patient's epidural space; and advancing the wireless neural stimulator through the epidural space until a target site is reached.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: April 30, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Chad David Andresen, Laura Tyler Perryman
  • Patent number: 10265530
    Abstract: Some implementations provide an implantable wirelessly powered device for implantation in a patient's body, the device including: two or more electrode arrays configured to apply at least one electrical pulse to an excitable tissue, each electrode array including at least one electrode; two or more connector contacts, each integrally wired to a particular electrode array, each configured to drive the at least one electrode of the particular electrode array integrally wired thereto with the at least one electrical pulse and to set a polarity for each of the at least one electrode of the particular electrode array integrally wired thereto; a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy as well as polarity assignment information, the second antenna located outside the patient's body; and one or more circuits electrically connected to the first antenna and the connector contacts, the circuits configured to: crea
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: April 23, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad David Andresen
  • Patent number: 10258800
    Abstract: An antenna assembly includes: an antenna including: a metal signal layer having a radiating surface; and a feed port; and a waveguide surrounding the antenna and configured to guide electromagnetic energy transmitted from the radiating surface in a direction away from the antenna; and a controller module connected to the feed port and configured to drive the antenna to transmit electromagnetic energy from the radiating surface; wherein the antenna, waveguide, and controller module are configured such that, when the controller module drives the antenna, the transmitted electromagnetic energy matches a reception characteristic of an implantable device and is sufficient for the implantable device to create one or more electrical pulses of sufficient amplitude to stimulate neural tissue of a patient, solely using electromagnetic energy received from the antenna, when the implantable device is located at least 10 centimeters away from the antenna.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: April 16, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Richard LeBaron, Andrej Simeunovic
  • Patent number: 10245436
    Abstract: Some implementations may provide an implantable wirelessly powered device that includes: one or more electrodes configured to apply one or more electrical pulses to an excitable tissue; and a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy, the second antenna being physically separate from the implantable device; and one or more circuits electrically connected to the first antenna, the circuits configured to: create the one or more electrical pulses suitable for stimulation of excitable tissue using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes, wherein the implantable device is shaped and arranged for delivery into a subject's body through an introducer or a needle of 18 gauge or smaller.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 2, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Patent number: 10245435
    Abstract: Some implementations provide a method for implanting a neurostimulator system that includes: placing an introducer through an incision site on a patient into an epidural space of the patient, the introducer including a sheath and the patient having a primary area of pain; placing a neurostimulator system through the introducer into the epidural space of the patient, the neurostimulator system comprising an enclosure housing at least one pair of electrodes and at least one passive antenna; advancing the neurostimulator system through the epidural space such that the electrodes are placed at a targeted tissue of the patient; removing the introducer sheath from the epidural space of the patient; adjusting the neurostimulator system enclosure to leave a customized length of the device body enclosure in the epidural space; and anchoring the customized length of the neurostimulator system enclosure in tissue of the patient.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: April 2, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Benjamin Speck
  • Patent number: 10238874
    Abstract: An implantable wireless lead includes an enclosure, the enclosure housing: one or more electrodes configured to apply one or more electrical pulses to a neural tissue; a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy, the second antenna being physically separate from the implantable neural stimulator lead; one or more circuits electrically connected to the first antenna, the circuits configured to: create the one or more electrical pulses suitable for stimulation of the neural tissue using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes, wherein the enclosure is shaped and arranged for delivery into a subject's body through an introducer or a needle.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: March 26, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad David Andresen