Abstract: A transistor device is fabricated by growing an epitaxial layer of semiconductor material on a semiconductor layer and forming an opening extending through the epitaxial layer at a position where a gate is to be located. This opening provides, from the epitaxial layer, a source epitaxial region on one side of the opening and a drain epitaxial region on an opposite side of the opening. The source epitaxial region and a first portion of the semiconductor layer underlying the source epitaxial region are then converted into a transistor source region. Additionally, the drain epitaxial region and a second portion of the semiconductor layer underlying the drain epitaxial region are converted into a transistor drain region. A third portion of the semiconductor layer between the transistor source and drain regions forms a transistor channel region. A transistor gate electrode is then formed in the opening above the transistor channel region.
Abstract: A method for co-integrating finFETs of two semiconductor material types, e.g., Si and SiGe, on a bulk substrate is described. Fins for finFETs may be formed in an epitaxial layer of a first semiconductor type, and covered with an insulator. A portion of the fins may be removed to form voids in the insulator, and the voids may be filled by epitaxially growing a semiconductor material of a second type in the voids. The co-integrated finFETs may be formed at a same device level.
Type:
Grant
Filed:
May 31, 2013
Date of Patent:
June 20, 2017
Assignee:
STMICROELECTRONICS, INC.
Inventors:
Nicolas Loubet, Prasanna Khare, Qing Liu
Abstract: An integrated circuit includes a source-drain region, a channel region adjacent to the source-drain region, a gate structure extending over the channel region and a sidewall spacer on a side of the gate structure and which extends over the source-drain region. A dielectric layer is provided in contact with the sidewall spacer and having a top surface. The gate structure includes a gate electrode and a gate contact extending from the gate electrode as a projection to reach the top surface. The side surfaces of the gate electrode and a gate contact are aligned with each other. The gate dielectric layer for the transistor positioned between the gate electrode and the channel region extends between the gate electrode and the sidewall spacer and further extends between the gate contact and the sidewall spacer.
Abstract: Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.
Type:
Grant
Filed:
August 24, 2015
Date of Patent:
June 13, 2017
Assignee:
STMicroelectronics, Inc.
Inventors:
Nicolas Loubet, Pierre Morin, Yann Mignot
Abstract: A semiconductor structure can include a substrate and a substrate layer. The substrate can be formed of silicon and the substrate layer can be formed of silicon germanium. Above the substrate and under the substrate layer there can be provided a multilayer substructure. The multilayer substructure can include a first layer and a second layer. The first layer can be formed of a first material and the second layer can be formed of second material. A method can include forming a multilayer substructure on a substrate, annealing the multilayer substructure, and forming a substrate layer on the multilayer substructure.
Type:
Grant
Filed:
April 20, 2016
Date of Patent:
June 13, 2017
Assignees:
GLOBALFOUNDRIES Inc., International Business Machines Corporation, STMicroelectronics, Inc.
Inventors:
Jody Fronheiser, Murat Kerem Akarvardar, Stephen Bedell, Joel Kanyandekwe
Abstract: First and second transistors with different electrical characteristics are supported by a substrate having a first-type dopant. The first transistor includes a well region within the substrate having the first-type dopant, a first body region within the well region having a second-type dopant and a first source region within the first body region and laterally offset from the well region by a first channel. The second transistor includes a second body region within the semiconductor substrate layer having the second-type dopant and a second source region within the second body region and laterally offset from material of the substrate by a second channel having a length greater than the length of the first channel. A gate region extends over portions of the first and second body regions for the first and second channels, respectively.
Type:
Grant
Filed:
June 30, 2015
Date of Patent:
June 6, 2017
Assignee:
STMICROELECTRONICS, INC.
Inventors:
John C. Pritiskutch, Richard Hildenbrandt
Abstract: Methods and semiconductor structures formed from the methods are provided which facilitate fabricating semiconductor fin structures. The methods include, for example: providing a wafer with at least one semiconductor fin extending above a substrate; transforming a portion of the semiconductor fin(s) into an isolation layer, the isolation layer separating a semiconductor layer of the semiconductor fin(s) from the substrate; and proceeding with forming a fin device(s) of a first architectural type in a first fin region of the semiconductor fin(s), and a fin device(s) of a second architectural type in a second fin region of the semiconductor fin(s), where the first architectural type and the second architectural type are different fin device architectures.
Type:
Grant
Filed:
May 17, 2016
Date of Patent:
June 6, 2017
Assignees:
GLOBALFOUNDRIES Inc., STMicroelectronics, Inc., International Business Machines Corporation
Inventors:
Ajey Poovannummoottil Jacob, Kangguo Cheng, Bruce Doris, Nicolas Loubet, Prasanna Khare, Rama Divakaruni
Abstract: A multiband dynamics compressor implements a solution for minimizing unwanted changes to the long-term frequency response. The solution essentially proposes undoing the multiband compression in a controlled manner using much slower smoothing times. In this regard, the compensation provided acts more like an equalizer than a compressor. What is applied is a very slowly time-varying, frequency-dependent post-gain (make-up gain) that attempts to restore the smoothed long-term level of each compressor band.
Abstract: A tensile strained silicon layer is patterned to form a first group of fins in a first substrate area and a second group of fins in a second substrate area. The second group of fins is covered with a tensile strained material, and an anneal is performed to relax the tensile strained silicon semiconductor material in the second group of fins and produce relaxed silicon semiconductor fins in the second area. The first group of fins is covered with a mask, and silicon-germanium material is provided on the relaxed silicon semiconductor fins. Germanium from the silicon germanium material is then driven into the relaxed silicon semiconductor fins to produce compressive strained silicon-germanium semiconductor fins in the second substrate area (from which p-channel finFET devices are formed). The mask is removed to reveal tensile strained silicon semiconductor fins in the first substrate area (from which n-channel finFET devices are formed).
Abstract: An integrated circuit die includes a substrate having a first layer of semiconductor material, a layer of dielectric material on the first layer of semiconductor material, and a second layer of semiconductor material on the layer of dielectric material. An extended channel region of a transistor is positioned in the second layer of semiconductor material, interacting with a top surface, side surfaces, and potentially portions of a bottom surface of the second layer of semiconductor material. A gate dielectric is positioned on a top surface and on the exposed side surface of the second layer of semiconductor material. A gate electrode is positioned on the top surface and the exposed side surface of the second layer of semiconductor material.
Type:
Grant
Filed:
May 31, 2016
Date of Patent:
May 30, 2017
Assignees:
STMicroelectronics, Inc., STMicroelectronics (Crolles 2) SAS
Abstract: A machine readable code is presented in the form of a graphic seal shape that includes a central region and numerous triangular shapes arranged in a sequence surrounding the central region. A vertex of each triangular shape extends radially outwardly from the central region. The triangular shapes include at least two visually distinct presentations for encoding information based on a pattern of the visually distinct presentations of the triangular shapes in the sequence.
Abstract: An AC/DC converter includes a first terminal and a second terminal for receiving an AC voltage and a third terminal and a fourth terminal for delivering a DC voltage. A capacitive circuit is connected between the third and fourth terminals. A rectifying bridge circuit has input terminals respectively coupled to the first and second terminals and has output terminal respectively connected to the third and fourth terminals. An inductive element is coupled in series with a first switch circuit between the first terminal and an input terminal of the rectifying bridge circuit.
Type:
Grant
Filed:
December 8, 2015
Date of Patent:
May 30, 2017
Assignees:
STMicroelectronics (Tours) SAS, STMicroelectronics, Inc.
Inventors:
Laurent Gonthier, Muriel Nina, Jurgis Astrauskas
Abstract: Multiple virtual MAC addresses may be added to WGA devices that may have different traffic streams to another device that requires different services, thus creating distinct MAC and device level implications. Beamforming training can be done at the device level for all virtual MAC addresses. Wakeup, doze, and ATIM power save can be done at the device level depending on the frames received. Authentication, deauthentication, association, and deassociation can be done variously at both levels. Further MSDUs can be aggregated for the multiple MAC addresses.
Abstract: A method for making a semiconductor device may include forming a first dielectric layer above a semiconductor substrate, forming a first trench in the first dielectric layer, filling the first trench with electrically conductive material, removing upper portions of the electrically conductive material to define a lower conductive member with a recess thereabove, forming a filler dielectric material in the recess to define a second trench. The method may further include filling the second trench with electrically conductive material to define an upper conductive member, forming a second dielectric layer over the first dielectric layer and upper conductive member, forming a first via through the second dielectric layer and underlying filler dielectric material to the lower conductive member, and forming a second via through the second dielectric layer to the upper conductive member.
Abstract: A method of forming a wavy line interconnect structure that accommodates small metal lines and enlarged diameter vias is disclosed. The enlarged diameter vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. The enlarged diameter vias make direct contact with at least three sides of the underlying metal lines, and can be aligned asymmetrically with respect to the metal line to increase the packing density of the metal pattern. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. By allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
Type:
Grant
Filed:
May 2, 2016
Date of Patent:
May 23, 2017
Assignees:
International Business Machines Corporation, STMICROELECTRONICS, INC.
Inventors:
John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Richard Stephen Wise, Akil K. Sutton, Terry Allen Spooner, Nicole A. Saulnier
Abstract: A wavy line interconnect structure that accommodates small metal lines and large vias is disclosed. A lithography mask design used to pattern metal line trenches uses optical proximity correction (OPC) techniques to approximate wavy lines using rectangular opaque features. The large vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. Instead, a sacrificial layer allows etching of an underlying thick dielectric block, while protecting narrow features of the trenches that correspond to the metal line interconnects. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. By lifting the shrink constraint for vias, thereby allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
Type:
Grant
Filed:
March 31, 2014
Date of Patent:
May 23, 2017
Assignees:
STMicroelectronics, Inc., International Business Machines Corporation
Inventors:
John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Richard Stephen Wise, Terry Spooner, Nicole A. Saulnier
Abstract: In one embodiment of the present invention, a method is provided for performing motion compensated interpolation using a previous frame and a current frame of a displayable output, the method comprising: detecting the speed of an object in the displayable output relative to the speed of a background in the displayable output; and blending results from a halo reducing interpolator and a median interpolator, wherein the results of each of the interpolators are weighted based on the speed of the object, to arrive at an interpolated frame using the previous frame and the current frame.
Abstract: A FinFET transistor includes a fin of semiconductor material with a transistor gate electrode extending over a channel region. Raised source and drain regions of first epitaxial growth material extending from the fin on either side of the transistor gate electrode. Source and drain contact openings extend through a pre-metallization dielectric material to reach the raised source and drain regions. Source and drain contact regions of second epitaxial growth material extend from the first epitaxial growth material at the bottom of the source and drain contact openings. A metal material fills the source and drain contact openings to form source and drain contacts, respectively, with the source and drain contact regions. The drain contact region may be offset from the transistor gate electrode by an offset distance sufficient to provide a laterally diffused metal oxide semiconductor (LDMOS) configuration within the raised source region of first epitaxial growth material.
Type:
Grant
Filed:
December 4, 2014
Date of Patent:
May 23, 2017
Assignees:
STMICROELECTRONICS, INC., GLOBALFOUNDRIES INC, INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Qing Liu, Ruilong Xie, Chun-Chen Yeh, Xiuyu Cai
Abstract: Methods and structures for forming a localized, strained region of a substrate are described. Trenches may be formed at boundaries of a localized region of a substrate. An upper portion of sidewalls at the localized region may be covered with a covering layer, and a lower portion of the sidewalls at the localized region may not be covered. A converting material may be formed in contact with the lower portion of the localized region, and the substrate heated. The heating may introduce a chemical species from the converting material into the lower portion, which creates stress in the localized region. The methods may be used to form strained-channel finFETs.
Abstract: Methods and structures for forming a reduced resistance region of a finFET are described. According to some aspects, a dummy gate and first gate spacer may be formed above a fin comprising a first semiconductor composition. At least a portion of source and drain regions of the fin may be removed, and a second semiconductor composition may be formed in the source and drain regions in contact with the first semiconductor composition. A second gate spacer may be formed covering the first gate spacer. The methods may be used to form finFETs having reduced resistance at source and drain junctions.
Type:
Grant
Filed:
June 17, 2014
Date of Patent:
May 23, 2017
Assignees:
STMicroelectronics, Inc., International Business Machines Corporation, GLOBALFOUNDRIES Inc.