Patents Assigned to STMicroelectronics, Inc.
  • Patent number: 9847281
    Abstract: Embodiments of the present disclosure are directed to leadframes having the cantilevered extension that includes an integral support on the end of the lead nearest the die pad. A support integral to the leadframe allows the support to be built to the proper height to support the cantilevered lead in each package and reduces or eliminates the upward, downward, and side to side deflections caused or allowed by supports built-in to the tooling of the manufacturing equipment. Also, by building the support into the leadframe, the leadframes may be pretaped prior to the die attach and wire bonding steps of the manufacturing process.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: December 19, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventor: Jefferson Talledo
  • Patent number: 9847988
    Abstract: A wireless local area network system establishes a PASSPOINT™ connection between a mobile station and a hotspot using an enhanced single SSID method or an enhanced dual SSID method. In the dual SSID method, an access point associates and authenticates a mobile device to a secondary SSID of the access point during enrollment and provisioning. After enrollment, the access point authenticates the mobile station to a primary SSID of the access point using the credential that the mobile station received from an online sign-up (“OSU”) server in connection with the secondary SSID. In the single SSID method, an access point performs two levels of authentication. During authentication, communications are limited to an 802.1x controlled port running on the mobile station and access point. After a first authentication, communications between the OSU server and the mobile station are unblocked. After the second authentication, all traffic from the mobile station is unblocked.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: December 19, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Liwen Chu, George A. Vlantis
  • Patent number: 9842828
    Abstract: One or more embodiments are directed to stacked packages, such as Package-on-Package (PoP) packages, that are stacked on a flexible folded substrate. The stacked packages have compliant corners. In particular, the stacked packages include an adhesive material at the corners between layers of the folded substrate. The adhesive material has a low modulus of elasticity, such as, for example, a modulus of elasticity of silicone adhesive. The low modulus of elasticity of the adhesive material produces compliant corners of the stacked package. The adhesive material fills openings between the folded substrate that are formed around a bottom semiconductor package of the stack package. In that regard, the bottom semiconductor package may have pulled back or recessed corners and the adhesive material fills the openings formed by the recessed corners. The recessed corners may be any size or shape.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: December 12, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventor: Jefferson Talledo
  • Patent number: 9841341
    Abstract: A surface mounting device has one body of semiconductor material such as an ASIC, and a package surrounding the body. The package has a base region carrying the body, a cap and contact terminals. The base region has a Young's modulus lower than 5 MPa. For forming the device, the body is attached to a supporting frame including contact terminals and a die pad, separated by cavities; bonding wires are soldered to the body and to the contact terminals; an elastic material is molded so as to surround at least in part lateral sides of the body, fill the cavities of the supporting frame and cover the ends of the bonding wires on the contact terminals; and a cap is fixed to the base region. The die pad is then etched away.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: December 12, 2017
    Assignees: STMICROELECTRONICS S.R.L., STMICROELECTRONICS, INC.
    Inventors: Fulvio Vittorio Fontana, Jefferson Talledo
  • Patent number: 9842794
    Abstract: One or more embodiments are directed to semiconductor packages having an integrated heatsink and methods of forming same. In one embodiment, a package includes a plurality of leads that support and enclose periphery portions of the semiconductor die. The leads have first and second, opposing surfaces that form outer surfaces of the package. The first surface of the leads may form a heatsink and the second surface of the leads form lands of the package for coupling to another device, substrate, or board. The package includes encapsulation material that surrounds the semiconductor die and located between upper portions of the leads. The package further includes a back filling material (or insulating material) that is below the semiconductor die and between lower portions of the leads.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: December 12, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Ela Mia Cadag, Jefferson Talledo
  • Patent number: 9837320
    Abstract: First and second transistors with different electrical characteristics are supported by a substrate having a first-type dopant. The first transistor includes a well region within the substrate having the first-type dopant, a first body region within the well region having a second-type dopant and a first source region within the first body region and laterally offset from the well region by a first channel. The second transistor includes a second body region within the semiconductor substrate layer having the second-type dopant and a second source region within the second body region and laterally offset from material of the substrate by a second channel having a length greater than the length of the first channel. A gate region extends over portions of the first and second body regions for the first and second channels, respectively.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: December 5, 2017
    Assignee: STMicroelectronics, Inc.
    Inventors: John C. Pritiskutch, Richard Hildenbrandt
  • Patent number: 9838963
    Abstract: A IEEE 802.11 Wireless Local Area Network (WLAN) system of an access point (AP) and one or more stations (STAs) reduces power consumption and increases battery life of power efficient low power STAs by decreasing the amount of time that a power efficient low power STA remains in an awake state. After indicating power efficient low power operation during association with an AP supporting such operation, the power efficient low power STA may enter the doze state from the time that the power efficient low power STA sends a PS-Poll until the power efficient low power STA receives the buffered DATA frame from the AP. While implementing the power efficient PS-Poll method, the AP can send the buffered DATA frame to the STA SIFS after the AP sends an ACK to the received PS-Poll from the STA.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: December 5, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Liwen Chu, George A. Vlantis
  • Patent number: 9833806
    Abstract: The present disclosure is directed to a microfluidic die that includes a plurality of heaters above a substrate, a plurality of chambers and nozzles above the heaters, a plurality of first contacts coupled to the heaters, and a plurality of second contacts coupled to the heaters. The plurality of second contacts are coupled to each other and coupled to ground. The die includes a plurality of contact pads, a first signal line coupled to the plurality of second contacts and to a first one of the plurality of contact pads, and a plurality of second signal lines, each second signal line being coupled to one of the plurality of first contacts, groups of the second signal lines being coupled together to drive a group of the plurality of heaters with a single signal, each group of the second signal lines being coupled to a remaining one of the plurality of contact pads.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: December 5, 2017
    Assignees: STMicroelectronics, Inc., STMICROELECTRONICS S.R.L., STMicroelectronics International N.V.
    Inventors: Simon Dodd, Joe Scheffelin, Dave Hunt, Matt Giere, Dana Gruenbacher, Faiz Sherman
  • Patent number: 9837119
    Abstract: An embodiment of a data-read path includes a defect detector and a data-recovery circuit. The defect detector is operable to identify a defective region of a data-storage medium, and the data-recovery circuit is operable to recover data from the data-storage medium in response to the defect detector. For example, such an embodiment may allow identifying a defective region of a data-storage disk caused, e.g., by a scratch or contamination, and may allow recovering data that was written to the defective region.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: December 5, 2017
    Assignee: STMICROELECTRONICS, INC
    Inventors: Shayan Srinivasa Garani, Sivagnanam Parthasarathy
  • Patent number: 9837394
    Abstract: Self-aligned three dimensional vertically stacked chip stacks and processes for forming the same generally include two or more vertically stacked chips supported by a scaffolding structure, the scaffolding structure defined by a first scaffolding trench and at least one additional scaffolding trench, the first scaffolding trench comprising a bottom surface having a width and a sidewall having a height extending from the bottom surface to define a lowermost trench in a scaffolding layer, the at least one additional scaffolding trench overlaying the first scaffolding trench having a sidewall having a height and a width, wherein the width of the at least one scaffolding trench is greater than the first scaffolding trench width to define a first stair between the first scaffolding trench and the at least one additional trench; a first chip secured to the first scaffolding trench having a height less than the first scaffolding trench sidewall height; and at least one additional chip secured to and supported by the
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: December 5, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Patent number: 9826434
    Abstract: Methods and systems are disclosed for the operation of wireless communication networks, in which communication channels can have possibly overlapping bandwidths of different sizes, including sensor networks operating by the IEEE 802.11ah standard. A first method of signaling to negotiate the channel bandwidth conveys the needed information in the SIG field of the PPDUs of duplicate RTS/CTS frames, and uses the SIG field of PPDUs of duplicated data, control and management frames to perform transmit opportunity protection. A second method of signaling to negotiate the channel bandwidth conveys the needed information in the scrambling sequence field of PPDUs of duplicate RTS, and uses the scrambling sequence field of PPDUs of duplicated data, control and management frames to perform transmit opportunity protection.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: November 21, 2017
    Assignee: STMicroelectronics, Inc.
    Inventors: Liwen Chu, George A. Vlantis
  • Patent number: 9824979
    Abstract: An electronic package includes a substrate having opposing first and second surfaces. Conductive areas are on a first surface of the substrate and include at least one edge conductive area. A plurality of conductive bumps are on the second surface of the substrate and coupled to respective ones of the conductive areas. An integrated circuit (IC) is carried by the substrate. Bond wires are coupled between the IC and respective ones of the conductive areas. An encapsulating material is over the IC and adjacent portions of the substrate. A conductive layer is on the encapsulating material, and at least one conductive body is coupled between the at least one edge conductive area and the conductive layer.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: November 21, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Godfrey Dimayuga, Frederick Arellano, Michael Tabiera
  • Patent number: 9825055
    Abstract: Single gate and dual gate FinFET devices suitable for use in an SRAM memory array have respective fins, source regions, and drain regions that are formed from portions of a single, contiguous layer on the semiconductor substrate, so that STI is unnecessary. Pairs of FinFETs can be configured as dependent-gate devices wherein adjacent channels are controlled by a common gate, or as independent-gate devices wherein one channel is controlled by two gates. Metal interconnects coupling a plurality of the FinFET devices are made of a same material as the gate electrodes. Such structural and material commonalities help to reduce costs of manufacturing high-density memory arrays.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: November 21, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventor: John H. Zhang
  • Patent number: 9820303
    Abstract: Multicast transmissions are efficient but do not allow for individual acknowledgement that the data was received by each receiver. This is not acceptable for isochronous systems that require specific levels of QoS for each device. A multimedia communications protocol is provided that uses a novel multi-destination burst transmission protocol in multimedia isochronous systems. The transmitter establishes a bi-directional burst mode for multicasting data to multiple devices and receiving Reverse Start of Frame (RSOF) delimiters from each multicast-destination receiver in response to multiple SOF delimiters, thus providing protocol-efficient multi-destination acknowledgements.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: November 14, 2017
    Assignee: STMicroelectronics, Inc.
    Inventors: Oleg Logvinov, Aidan Cully, David Lawrence, Michael Macaluso
  • Patent number: 9818930
    Abstract: A support structure includes an internal cavity. An elastic membrane extends to divide the internal cavity into a first chamber and a second chamber. The elastic membrane includes a nanometric-sized pin hole extending there through to interconnect the first chamber to the second chamber. The elastic membrane is formed of a first electrode film and a second electrode film separated by a piezo insulating film. Electrical connection leads are provided to support application of a bias current to the first and second electrode films of the elastic membrane. In response to an applied bias current, the elastic membrane deforms by bending in a direction towards one of the first and second chambers so as to produce an increase in a diameter of the pin hole.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: November 14, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventor: John Hongguang Zhang
  • Patent number: 9818675
    Abstract: An integrated circuit (IC) device may include a leadframe and an IC die having a first surface coupled to the lead frame and a second surface opposite the first surface. The IC device may further include a conductive clip including a first portion coupled to the second surface of the IC die, a second portion coupled to the first portion and extending laterally away from the IC die, and at least one flexible lead coupled to the second portion and looping back under the second portion toward the leadframe. Furthermore, a package may be over the leadframe, IC die, and conductive clip and have an opening therein exposing the at least one flexible lead.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: November 14, 2017
    Assignee: STMicroelectronics, Inc.
    Inventors: Jefferson Talledo, Ela Mia Cadag
  • Patent number: 9806022
    Abstract: A method for making a semiconductor device may include forming a first dielectric layer above a semiconductor substrate, forming a first trench in the first dielectric layer, filling the first trench with electrically conductive material, removing upper portions of the electrically conductive material to define a lower conductive member with a recess thereabove, forming a filler dielectric material in the recess to define a second trench. The method may further include filling the second trench with electrically conductive material to define an upper conductive member, forming a second dielectric layer over the first dielectric layer and upper conductive member, forming a first via through the second dielectric layer and underlying filler dielectric material to the lower conductive member, and forming a second via through the second dielectric layer to the upper conductive member.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: October 31, 2017
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Patent number: 9806196
    Abstract: A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, and source and drain regions adjacent the channel region to generate shear and normal strain on the channel region. A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, source and drain regions adjacent the channel region, and a gate over the channel region. The fin may be canted with respect to the source and drain regions to generate shear and normal strain on the channel region.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: October 31, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Pierre Morin, Nicolas Loubet
  • Patent number: 9799776
    Abstract: A semi-floating gate transistor is implemented as a vertical FET built on a silicon substrate, wherein the source, drain, and channel are vertically aligned, on top of one another. Current flow between the source and the drain is influenced by a control gate and a semi-floating gate. Front side contacts can be made to each one of the source, drain, and control gate terminals of the vertical semi-floating gate transistor. The vertical semi-floating gate FET further includes a vertical tunneling FET and a vertical diode. Fabrication of the vertical semi-floating gate FET is compatible with conventional CMOS manufacturing processes, including a replacement metal gate process. Low-power operation allows the vertical semi-floating gate FET to provide a high current density compared with conventional planar devices.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: October 24, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Qing Liu, John H. Zhang
  • Patent number: 9801114
    Abstract: In accordance with an embodiment, a network device includes a network controller and at least one network interface coupled to the network controller that includes at least one media access control (MAC) device configured to be coupled to at least one physical layer interface (PHY). The network controller may be configured to determine a network path comprising the at least one network interface that has a lowest power consumption and minimum security attributes of available media types coupled to the at least one PHY.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: October 24, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Oleg Logvinov, Aidan Cully, James D. Allen