Abstract: A hybrid analog-digital pixel circuit is fabricated on two wafers. A first wafer includes the analog pixel circuitry and a second wafer includes the digital control and processing circuitry. Externally accessible contact structures for electrically interconnecting the two wafers are arranged in groups. Each group includes externally accessible contact structures for carrying signals associated solely with operation of a corresponding pixel.
Abstract: An image sensor has an array of light-sensitive pixels. Each pixel of the array includes a photodiode and a plurality of capacitors configured to store charge from the photodiode. The image sensor has an address decoder, coupled to the array of light-sensitive pixels. In at least one mode of operation, portions of the array of light-sensitive pixels to capture respective image exposures. The portions may include interlaced rows of pixels of the array of light-sensitive pixels, blocks of rows of pixels of the array of light-sensitive pixels, interlaced columns of pixels of the array of light-sensitive pixels, interlaced columns and rows of pixels of the array of light-sensitive pixels, blocks of columns and rows of pixels of the array of light-sensitive pixels, etc.
Abstract: A pixel arrangement includes a photodiode, a reset transistor configured to be controlled by a reset signal and coupled to a reset input voltage, a transfer gate transistor configured to transfer charge from the photodiode to a node, wherein the transfer gate transistor is controlled by a transfer gate voltage, and a source follower transistor controlled by the voltage on the node and coupled to a source follower voltage. A capacitor is coupled between the node and an input voltage. During a read operation the input voltage is increased to boost the voltage at the node. The increased input voltage may, for example, be one the reset input voltage, said source follower voltage, said transfer gate voltage and a boosting voltage.
Abstract: An electronic device disclosed herein includes a single photon avalanche diode (SPAD) configured to detect an incoming photon and to generate a first pulse signal in response thereto. Pulse shaping circuitry is configured to generate a second pulse signal from the first pulse signal by high pass filtering the first pulse signal. The pulse shaping circuitry includes a transistor drain-source coupled between a first node and a reference node, and a capacitor coupling the first node to an anode of the SPAD.
Abstract: Method and apparatus for controlling signal-to-noise ratio (SNR) in high dynamic range automatic exposure control imaging are disclosed. In the method and apparatus, image data is received and a shadow threshold is determined based on the image data. Further, a respective threshold integration ratio is determined for each merge transition of a plurality of exposures having a respective plurality of exposure times. The threshold integration ratio is determined based on a threshold SNR for the merge transition. In the method and apparatus, an integration ratio for each merge transition is determined based on the shadow threshold and the threshold integration ratios. An output image is generated based on the determined integration ratios for each merge transition.
Abstract: A circuit may include an array of single photon avalanche diode (SPAD) cells, each SPAD cell configured to be selectively enabled by an activation signal. The circuit may include a control circuit configured to selectively enable a subset of the array of SPAD cells based on a measured count rate of the array of SPAD cells.
Type:
Grant
Filed:
October 29, 2015
Date of Patent:
October 10, 2017
Assignees:
STMicroelectronics (Research & Development) Limited, STMicroelectronics (Grenoble 2) SAS
Inventors:
Pascal Mellot, Stuart McLeod, Bruce Rae, Marc Drader
Abstract: One or more embodiments are directed to laser circuits, methods and devices that include a current sensing circuit for sensing a lasing current provided to a laser diode or device. One embodiment is directed to a circuit that includes a laser device, a switching device, a current sensing circuit and a current comparator. The switching device has a first conduction terminal coupled to the laser device and a second conduction terminal coupled to a supply voltage. The switching device is configured to operatively supply a lasing current to the laser device. The current sensing circuit is coupled to the switching device and is configured to generate a sense current representative of the lasing current. The current comparator is configured to receive the sense current from the current sensing circuit, to receive a reference current, and to compare the sense current with the reference current.
Abstract: A device such as a laser diode is provided with a monitoring arrangement. The monitoring arrangement has voltage to current converters arranged to provide respectively currents which are proportional to the respective voltages on an anode and on a cathode of the laser diode. The monitoring arrangement provides a first output signal when the laser diode is on too long. That output signal is used to cause the laser diode to be switched off.
Abstract: A monitor includes a register configured to store at least two contexts and a context change value. A context selector is configured to select at least one of the two contexts for context monitoring. The selection is made dependent on whether the context change value matches a first part of a memory access address.
Abstract: An array of image sensing elements is arranged in rows and columns. A readout circuit for each column includes a circuit configured to receive a column select signal. A memory stores data indicative of a voltage of an image sensing element which is being read. An analog to digital conversion circuit provides an output to the memory to control the storing of data. The output is dependent on the voltage of the image sensing element. Power control circuitry operates to disable, at least partially, the analog to digital conversion circuit when the column has not been selected.
Abstract: A Single-Photon Avalanche Diode (SPAD) device an active region configured to detect incident radiation, a first radiation blocking ring surrounding the active region, and a radiation blocking cover configured to shield part of the active region from the incident radiation. The radiation blocking cover is configured to define a second radiation blocking ring vertically spaced apart from the first radiation blocking ring. The SPAD device may include radiation blocking vias extending between the first and second radiation blocking rings.
Type:
Grant
Filed:
September 30, 2015
Date of Patent:
August 8, 2017
Assignees:
STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED, STMICROELECTRONICS (GRENOBLE 2) SAS
Inventors:
Flavien Hirigoyen, Bruce Rae, Gaelle Palmigiani, Stuart McLeod
Abstract: A pixel arrangement includes a photodiode, a reset transistor configured to be controlled by a reset signal and coupled to a reset input voltage, a transfer gate transistor configured to transfer charge from the photodiode to a node, wherein the transfer gate transistor is controlled by a transfer gate voltage, and a source follower transistor controlled by the voltage on the node and coupled to a source follower voltage. A capacitor is coupled between the node and an input voltage. During a read operation the input voltage is increased to boost the voltage at the node. The increased input voltage may, for example, be one the reset input voltage, said source follower voltage, said transfer gate voltage and a boosting voltage.
Abstract: An array of image sensing elements is arranged in rows and columns. A readout circuit for each column includes a circuit configured to receive a column select signal. A memory stores data indicative of a voltage of an image sensing element which is being read. An analog to digital conversion circuit provides an output to the memory to control the storing of data. The output is dependent on the voltage of the image sensing element. Power control circuitry operates to disable, at least partially, the analog to digital conversion circuit when the column has not been selected.
Abstract: A method disclosed herein includes operating a processor of a system on a chip in a configuration mode until completion of a set of tasks, and operating the processor in a normal operation mode after completion of the set of tasks. During the configuration mode, the method includes performing steps of sending by the processor of configuration information to a configuration programming block, sending by the configuration programming block of the configuration information to one or more electronic components to thereby complete a first subset of the set of tasks, while permitting the processor to complete a second subset of the set of tasks, and sending by the configuration programming block of a notification to the processor after completing the first subset of the set of tasks.
Abstract: A camera module with a fixed near field focus is configured to capture a single image. That single image is segmented by an image divider a number of regions. A focus metric determiner then determines a focus metric for each of the regions. A depth map generator maps the focus metric into a depth value for each of the regions and combines the depth values to generate a depth map.
Abstract: An apparatus includes a camera module configured to generate at least one image and a ToF SPAD based range detecting module configured to generate at least one distance determination to an object within a field of view of the camera module. A processor receives the at least one image from the camera module output and receives the at least one distance determination from the ToF SPAD based range detecting module. This data is processed by the processor to determine a depth map.
Abstract: A ToF SPAD based range detecting module is configurable for operation in a first mode to make a distance determination relative to an object within a field of view. The ToF SPAD based range detecting module is further configurable for operation in a second mode to enagage in bi-directional data communication with another apparatus within the field of view.
Abstract: A distance sensing apparatus includes a light source configured to emit polarized light. A light sensitive detector detects light emitted by said light source and reflected from a target. The light sensitive detector is configured to substantially prevent polarized light reflected from a target with a relatively high reflectance from being detected.
Abstract: A ranging apparatus includes an array of light sensitive detectors configured to receive light from a light source which has been reflected by an object. The array includes a number of different zones. Readout circuitry including at least one read out channel is configured to read data output from each of the zones. A processor operates to process the data output to determine position information associated with the object.
Type:
Application
Filed:
May 31, 2016
Publication date:
June 22, 2017
Applicants:
STMicroelectronics (Research & Development) Limited, STMicroelectronics (Grenoble 2) SAS
Inventors:
Bruce Rae, Pascal Mellot, John Kevin Moore, Graeme Storm
Abstract: Photoluminescence from a sample detector is detected using an array of photo-sensitive detectors. At least one first photo-sensitive detector of the array is provided with a first type of linear polarization filter and at least one second photo-sensitive detector is provided with a second type of linear polarization filter. The first type of linear polarization filter has a plane of polarization which is at angled with respect to a plane of polarization of said second type of polarization filter.