Abstract: A ranging apparatus includes a first array with first light sensitive detectors configured to receive light which has been reflected by an object and generate an output. A second array, spaced apart from the first array by a spacing distance, is further included, the second array having second light sensitive detectors. The second array is configurable to either receive light which has been reflected by the object or to be a reference array and generate an output. A processor operates to determine a distance to the object in response to the outputs from the first and the second arrays.
Abstract: A circuit, such as an integrated circuit or a die, has a first input pad configured to receive a multiplexed signal including scan data and a clock signal, a scan chain having a scan data input and a clock input and circuitry coupled between said first input pad and said scan chain. The circuitry is configured to extract the scan data and the clock signal from the received multiplexed signal, provide the extracted scan data to the scan data input of the scan chain, and provide the extracted clock signal to the clock input of the scan chain.
Type:
Grant
Filed:
March 26, 2015
Date of Patent:
May 30, 2017
Assignee:
STMicroelectronics (Research and Development) Limited
Abstract: A hybrid analog-digital pixel circuit is fabricated on two wafers. A first wafer includes the analog pixel circuitry and a second wafer includes the digital control and processing circuitry. Externally accessible contact structures for electrically interconnecting the two wafers are arranged in groups. Each group includes externally accessible contact structures for carrying signals associated solely with operation of a corresponding pixel.
Abstract: A configuration arrangement includes a first interface configured to receive configuration information from a master configuration function and a second interface configured to provide at least one output to one or more entities to be configured. Configuration circuitry operates responsive to the configuration information to provide the at least one output, wherein that output controls the configuration of the one or more entities.
Abstract: A time to digital converter includes a sample module operable to sample an input signal at multiple different instances of time. A transition detection module, formed of comparison elements, processes the sampled input signal at successive time instances so as to detect transitions in the input signal in terms of time. An output module generates detected transitions in the input signal on multiple parallel outputs.
Abstract: A mobile communications device includes an antenna, a navigation pad and a signal processor. The antenna, navigation pad, and signal processor cooperate to encode and transmit motion signals from the navigation pad to a computer so that the mobile communications device functions as a pointing device for the computer.
Abstract: One or more embodiments are directed to a device comprising: a body having a cavity, an opaque structure, and an aperture in the body that places the cavity in fluid communication with an environment external to the body. A photon emitter is located in the cavity below the aperture and configured to emit photons through the aperture to the environment external to the body. A photon receiver is located in the cavity below the opaque structure of the body and configured to receive photons that are each reflected from both an object that is spaced apart from the body in the environment external to the body and from a surface of the opaque structure.
Abstract: A diffractive optical element (DOE) is designed to implement both a collimation function with respect to an input divergent beam and a beam shaping function with respect to an output divergent beam. The phase designs of the collimation function and the beam shaping function are independently produced in the phase domain. These phase designs are then combined using a phase angle addition of the individual functions and wrapped between 0 and 2? radians. The diffractive surface of the DOE is then defined from the wrapped phase angle addition of the individual functions.
Abstract: A photosensor arrangement may include an amplifier configured to receive charge from a photosensor device at a first input, and a second input configured to receive a first reference voltage. The amplifier may provide an output voltage on an output. A comparator has a first input at the output voltage, a second input at the first reference voltage and is configured to provide a compare output. A capacitor is configured to have a first plate coupled to the output of the amplifier and a second plate coupled to the first input of the comparator.
Abstract: A method, data structure and computer program are provided. A file is stored in a first memory. A duplicate of at least a part of the file is stored in the first memory. A processor is reset based on the duplicate of at least a part of the file.
Abstract: An optical pulse emitter includes a light emitting device having a first node coupled to an intermediate node via a first switch. The intermediate node is coupled to a supply voltage node via a second switch. A capacitor is coupled to the intermediate node. The first, second and third switches are controlled by a control circuit. During a first phase, the second switch is actuated to couple the capacitor to the supply voltage node. During a second phase, the second switch is deactuated and the first switch is actuated to at least partially discharge the capacitor through the light emitting device. During a third phase, discharge current from the capacitor bypasses around the light emitting device.
Abstract: A pixel has a photodiode configured to be sensitive to light. The pixel is arranged to use back side illumination. The pixel has at least one sample and hold capacitor which is arranged on the side of the photodiode remote from a side on which light impinges. The capacitor overlies at least part of the photodiode.
Abstract: A system may monitor a vibration isolating connection between a first part and a second part. The system may include a light source, an optical sensor mounted to receive light from the light source, and a processing unit for providing an output indicative of the deformation of the vibration isolating connection based on the output of the optical sensor.
Abstract: An electronic device includes a ranging light source and a reflected light detector. A logic circuit causes the ranging light source to emit ranging light at a target. Reflected light from the target is detected using the reflected light detector, with the reflected light being a portion of the ranging light that reflects from the target back toward the reflected light detector. An intensity of the reflected light is determined using the reflected light detector. A distance to the target is determined based upon time elapsed between activating the ranging light source and detecting the reflected ranging light. Reflectance of the target is calculated, based upon the intensity of the reflected light and the distance to the target.
Type:
Application
Filed:
July 27, 2015
Publication date:
February 2, 2017
Applicants:
STMicroelectronics (Research & Development) Limited, STMicroelectronics, Inc.
Abstract: An array of photon sensitive devices is configured to provide outputs. Pulse shaping circuits operate to shape a respective output of the array in a normal mode of operation and shape a calibration signal in a calibration mode of operation.
Abstract: A proximity sensor includes a radiation source configured to emit a primary radiation beam and a primary detector configured to pick up a reflected primary radiation beam. The radiation source is further configured to emit stray radiation. The sensor further includes a reference detector arranged to receive the stray radiation. The stray radiation may, for example, be emitted from either a side of the radiation source or a bottom of the radiation source.
Abstract: A functional circuit includes at least one silicon on insulator (SOI) transistor and at least one output terminal. A biasing circuit controls an operational voltage supplied to the functional circuit. The biasing circuit disables the at least one output terminal by controlling a reverse body bias voltage supplied to reverse body bias the at least one SOI transistor.
Abstract: An array of image sensing elements is arranged in rows and columns. A readout circuit for each column includes a circuit configured to receive a column select signal. A memory stores data indicative of a voltage of an image sensing element which is being read. An analog to digital conversion circuit provides an output to the memory to control the storing of data. The output is dependent on the voltage of the image sensing element. Power control circuitry operates to disable, at least partially, the analog to digital conversion circuit when the column has not been selected.
Abstract: A sensor pixel detects a photon and outputs a first voltage proportional to a time of arrival of the detected photon. This voltage is converted to a multi-bit digital signal in the format of a thermometer code. A number of counter circuits, one counter circuit per bit of the multi-bit digital signal, are provided to accumulate the thermometer coded outputs. Each counter is configured to increment in response to an active logic state of the corresponding bit of the multi-bit digital signal. Accumulated count values in the counter circuits provide a timing histogram with respect to photon detection.
Abstract: A time of flight detector includes an electromagnetic radiation emitter configured to emit a beam of radiation. A first optical element receives the beam of radiation and generates a collimated beam of radiation. A second optical element defines a narrow imaging field of view sufficient to capture reflected electromagnetic radiation from the collimated beam. An electromagnetic radiation sensor then senses the captured reflected electromagnetic radiation from the collimated beam in the narrow imaging field of view. Further narrowing of the imaging field of view is accomplished by selective enabling a sub-array of photosensitive elements with the electromagnetic radiation sensor.