Abstract: A method for setting the clock frequency of a processing unit of an electromagnetic transponder, wherein a ratio between data, representative of a voltage across an oscillating circuit of the transponder and obtained for two values of the resistive load, is compared with one to decide whether to increase or decrease the clock frequency of the processing unit.
Abstract: The disclosure relates to a method for detecting a current comprising: generating a bias current, transmitting the bias current to a feedback stage and a measurement stage connected to the measurement node receiving a current to be measured, slaving a voltage to the measurement node at a constant value by the measurement and feedback stages, transmitting to an output stage, a current circulating in the measurement stage, which depends on the bias current and the current to be measured, and converting a current circulating in the output stage into a voltage.
Abstract: The present disclosure relates to a method for writing in an EEPROM memory, the method comprising steps of: storing the bits of a word to be written in first memory units, erasing a word to be modified, formed by first memory cells connected to a word line and first bit lines, reading bits stored in the memory cells of a word line WL<i>, in a first read mode and storing the bits read in second memory units, reading in a second read mode the bits stored in the memory cells of the word line, and programming each memory cell of the word line connected to a memory unit storing a bit in the programmed state of the word to be written, of an erased word or of a word comprising a bit having different states in the first and second read modes.
Abstract: A method for characterizing or measuring a capacitance includes linking the capacitance to a first mid-point of a first capacitive divider bridge, applying to the divider bridge a bias voltage, maintaining the voltage of the first mid-point near a reference voltage, discharging a second mid-point of a second divider bridge in parallel with the first using a constant current, and measuring the time for a voltage of the second mid-point to become equal to the voltage of the first mid-point. The method may be applied in particular to the control of a touch screen display.
Abstract: An electric charge flow element including, on an insulating support, a stack of a first electrode, of a dielectric layer having at least one portion capable of letting charges flow by tunnel effect, and of a second electrode, wherein at least one of the electrodes is made of undoped polysilicon.
Abstract: The information bits and the parity bits are encrypted in a microcontroller and transmitted on a bus to a transceiver head which forms the frames to be transmitted on a channel from encrypted information bits and from encrypted parity bits received on the bus.
Abstract: A method for writing and reading data memory cells, comprising: defining in a first memory zone erasable data pages and programmable data blocks; and, in response to write commands of data, writing data in erased blocks of the first memory zone, and writing, in a second memory zone, metadata structures associated with data pages and comprising, for each data page, a wear counter containing a value representative of the number of times that the page has been erased.
Abstract: The present disclosure relates to a method for manufacturing a non-volatile memory on a semiconductive substrate, comprising the steps of implanting in the depth of the substrate a first doped region forming a source region of selection transistors, forming in the substrate a buried gate comprising deep parts extending between an upper face of the substrate and the first doped region, implanting between two adjacent deep parts of the buried gate, a second doped region forming a common drain region of common selection transistors of a pair of memory cells, the selection transistors of the pair of memory cells thus having channel regions extending between the first doped region and the second doped region, along faces opposite the two buried gate adjacent deep parts, and implanting along opposite upper edges of the buried gate, third doped regions forming source regions of charge accumulation transistors.
Type:
Grant
Filed:
October 1, 2013
Date of Patent:
July 7, 2015
Assignee:
STMicroelectronics (Rousset) SAS
Inventors:
Francesco La Rosa, Stephan Niel, Arnaud Regnier, Yoann Goasduff
Abstract: A countermeasure in a logic circuit having a logic gate supplying a binary output signal, the method including supplying binary data having random values to inputs of logic circuit during a precharge phase; supplying data to process to inputs of the logic circuit during a data processing phase; supplying on input of the logic circuit a precharge command signal launching a precharge phase; and under the effect of the precharge command signal, adapting the functioning of a logic gate of the logic circuit, statistically unbalanced, so that the output signal of the logic gate is in a binary state with a same probability as the random binary data supplied on input of the logic circuit during the precharge phase.
Abstract: A device for detecting a laser attack made on an integrated circuit chip comprises a bipolar transistor of a first type formed in a semiconductor substrate, that bipolar transistor comprising a parasitic bipolar transistor of a second type. A buried region, forming the base of the parasitic bipolar transistor, operates as a detector of the variations in current flowing caused by impingement of laser light on the substrate.
Type:
Grant
Filed:
November 3, 2014
Date of Patent:
June 30, 2015
Assignee:
STMicroelectronics (Rousset) SAS
Inventors:
Fabrice Marinet, Jimmy Fort, Alexandre Sarafianos, Julien Mercier
Abstract: A system for detecting a laser attack on an integrated circuit chip formed in a semiconductor substrate, including a detection device capable of detecting voltage variations of the substrate. The system includes P-type first wells and N-type second wells extending in a P-type upper portion of the substrate; an N-type buried layer extending under at least a portion of the first and second wells; biasing contacts for the second wells and the buried layer; ground contacts for the first wells; and substrate contacts for detecting a substrate voltage, the detection contacts surrounding the first and second wells. The detection device comprises a resistor having a first terminal connected to said ground contacts of the first wells and a second terminal connected to said substrate contacts; and a comparator connected in with the resistor configured to detect a potential difference across the resistor.
Abstract: An electromagnetic transponder includes an oscillatory circuit, a battery and a first rectifier bridge. Alternating current input terminals of the rectifier bridge are connected to the terminals of the oscillatory circuit, and at least two rectifier elements of the rectifier bridge are controllable on the basis of the voltage supplied by the battery.
Abstract: The regulator with low dropout voltage comprises an error amplifier and an output stage comprising an output transistor and a buffer circuit comprising an input connected to the output node of the error amplifier, an output connected to the output transistor, a follower amplifier connected between the input and the output of the buffer circuit. The buffer circuit furthermore comprises a transistor active load connected to the output of the follower amplifier and a negative feedback amplifier arranged in common gate configuration and connected between the output of the follower amplifier and the gate of the transistor of the active load.
Abstract: The present disclosure relates to a method for controlling a touch pad, comprising an object locate mode for locating an object on the touch pad comprising steps of: determining a measurement of capacitance of each of the pairs of electrodes of the touch pad, each pair comprising a row electrode and a column electrode transverse to the row electrode, comparing each measurement with a first detection threshold, and if the comparison of at least one measurement with the first threshold reveals the presence of an object on the touch pad, locating the object on the touch pad according to the capacitance measurements, the method comprising a proximity detection mode comprising steps of: determining a measurement representative of the capacitance between one or two electrodes and one or two other electrodes of the touch pad, and comparing a measurement obtained with a second detection threshold different from the first threshold.
Type:
Grant
Filed:
March 11, 2014
Date of Patent:
April 28, 2015
Assignee:
STMicroelectronics (Rousset) SAS
Inventors:
Laurent Beyly, Cyril Troise, Maxime Teissier
Abstract: A method for protecting a key intended to be used by an electronic circuit in an encryption or decryption algorithm, including the steps of: submitting the key to a first function taking a selection value into account; storing all or part of the result of this function in at least two registers; when the key is called by the algorithm, reading the contents of said registers and submitting them to a second function taking into account all or part of the bits of the registers; and providing the result of the combination as an input for the algorithm, the second function being such that the provided result corresponds to the key.
Abstract: A circuit and method of detecting a fault attack in a circuit includes a plurality of registers each identified by an address. The method includes storing in a memory the address present on an address bus during a write operation to one of said registers. In response to a first alert signal indicating that the data stored by a first of said registers has been modified, comparing the address identifying said first register with said stored address.
Abstract: The present disclosure relates to a method for routing data between a sending unit and a receiving unit linked by a network in a processing system comprising several units, the method comprising steps of routing data in the network between the sending unit and the receiving unit, and of applying a process to the routed data, the process comprising several steps which are applied to the data by different units in the network receiving the data, to use latency times in data routing.
Abstract: A method for protecting a calculation, by an electronic circuit, of a modular exponentiation of a digital quantity, wherein: a first variable is initialized with a random quantity increased by once unit; a second variable is initialized with the product of the digital quantity by the random quantity; a third variable is initialized with the digital quantity; iteratively for all the bits at 1 of an exponent of the modular exponentiation, the first variable is updated by: a) multiplying its content by that of the third variable; and b) subtracting thereto the content of the second variable increased by the random quantity; and once all the bits of the exponent have been processed, the content of the first variable is decreased by the random quantity to provide the result of the modular exponentiation.
Abstract: The disclosure relates to a method of manufacturing vertical gate transistors in a semiconductor substrate, comprising implanting, in the depth of the substrate, a doped isolation layer, to form a source region of the transistors; forming, in the substrate, parallel trench isolations and second trenches perpendicular to the trench isolations, reaching the isolation layer, and isolated from the substrate by a first dielectric layer; depositing a first conductive layer on the surface of the substrate and in the second trenches; etching the first conductive layer to form the vertical gates of the transistors, and vertical gate connection pads between the extremity of the vertical gates and an edge of the substrate, while keeping a continuity zone in the first conductive layer between each connection pad and a vertical gate; and implanting doped regions on each side of the second trenches, to form drain regions of the transistors.
Type:
Grant
Filed:
January 6, 2014
Date of Patent:
April 21, 2015
Assignee:
STMicroelectronics (Rousset) SAS
Inventors:
Francesco La Rosa, Stephan Niel, Arnaud Regnier, Hélène Dalle-Houilliez
Abstract: An integrated circuit, including: a semiconductor substrate of a first conductivity type; a plurality of regions of the first conductivity type vertically extending from the surface of the substrate, each of the regions being laterally delimited all along its periphery by a region of the second conductivity type; and a device for detecting a variation of the substrate resistance between each region of the first conductivity type and an area for biasing the substrate to a reference voltage.