Abstract: A sensor of volatile substances including: a sensitive layer, of a sensitive material that is permeable to a volatile substance and has an electrical permittivity depending upon a concentration of the volatile substance absorbed; a first electrode structure and a second electrode structure capacitively coupled together and arranged so that a capacitance between the first electrode structure and the second electrode structure is affected by the electrical permittivity of the sensitive material; and a supply device, configured to supply a heating current through one between the first electrode structure and the second electrode structure in a first operating condition, so as to heat the sensitive layer.
Abstract: In an embodiment, a semiconductor device includes: a mounting substrate having electrically conductive formations thereon, a semiconductor die coupled with the mounting substrate, the semiconductor die with electrical contact pillars facing towards the mounting substrate, an anisotropic conductive membrane between the semiconductor die and the mounting substrate, the membrane compressed between the electrical contact pillars and the mounting substrate to provide electrical contact between the electrical contact pillars of the semiconductor die and the electrically conductive formations on the mounting substrate.
Abstract: What is described is a MEMS device comprising a piezoelectric actuator, which includes a film of piezoelectric material. The film is penetrated by a plurality of holes.
Abstract: An HEMT includes a buffer layer, a hole-supply layer on the buffer layer, a heterostructure on the hole-supply layer, and a source electrode. The hole-supply layer is made of P-type doped semiconductor material, the buffer layer is doped with carbon, and the source electrode is in direct electrical contact with the hole-supply layer, such that the hole-supply layer can be biased to facilitate the transport of holes from the hole-supply layer to the buffer layer.
Abstract: A MOS transistor, in particular a vertical channel transistor, includes a semiconductor body housing a body region, a source region, a drain electrode and gate electrodes. The gate electrodes extend in corresponding recesses which are symmetrical with respect to an axis of symmetry of the semiconductor body. The transistor also has spacers which are also symmetrical with respect to the axis of symmetry. A source electrode extends in electrical contact with the source region at a surface portion of the semiconductor body surrounded by the spacers and is in particular adjacent to the spacers. During manufacture the spacers are used to form in an auto-aligning way the source electrode which is symmetrical with respect to the axis of symmetry and equidistant from the gate electrodes.
Abstract: A phase change memory includes an L-shaped resistive element having a first part that extends between a layer of phase change material and an upper end of a conductive via and a second part that rests at least partially on the upper end of the conductive via and may further extend beyond a peripheral edge of the conductive via. The upper part of the conductive via is surrounded by an insulating material that is not likely to adversely react with the metal material of the resistive element.
Abstract: An in-liquid state of a mobile device is detected by processing color components indicative of an intensity of the ambient light at different wavelengths and a pressure data indicative of ambient pressure. A first plausibility index indicates a likelihood of an air/liquid transition as a function of variations of at least two color components. A second plausibility index indicates a likelihood of an air/liquid transition as a function of variations of said ambient pressure. If both the first and the second plausibility indices indicate a likely air/liquid transition event, an in-liquid state signal is generated.
Type:
Grant
Filed:
March 9, 2017
Date of Patent:
December 17, 2019
Assignee:
STMicroelectronics S.r.l.
Inventors:
Enrico Rosario Alessi, Giuseppe Spinella
Abstract: An embodiment of a process for realizing a system for recovering heat is described, the process comprising the steps of: formation on a substrate of a plurality of L-shaped down metal structures; deposition of a dielectric layer on the substrate and the plurality of L-shaped down metal structures by using a screen printing approach; definition and opening in the dielectric layer of upper contacts and lower contacts of the L-shaped down metal structures; formation of a plurality of L-shaped up metal structures being connected to the plurality of L-shaped down metal structure in correspondence of the upper and lower contacts so as to form a plurality of serially connected thermocouples, each comprising at least one L-shaped down metal structure and at least one L-shaped up metal structure, being made of different metal materials and interconnected at a junction, the serially connected thermocouples thus realizing the system for recovering heat.
Abstract: A modular reduction calculation on a first number and a second number is protected from side-channel attacks, such as timing attacks. A first intermediate modular reduction result is calculated. A value corresponding to four times the first number is added to the first intermediate modular reduction result, generating a second intermediate modular reduction result. A value corresponding to the first number multiplied by a most significant word of the second intermediate modular reduction result plus 1, is subtracted from the second intermediate modular reduction result, generating a third intermediate modular reduction result. A cryptographic operation is performed using a result of the modular reduction calculation.
Abstract: One or more embodiments are directed to semiconductor packages that include conductive test pads that are electrically coupled to, but distinct from, the leads of the package. In one embodiment the test pads are located on the plastic packaging material, such as encapsulation material, of the package and are electrically coupled to the leads of the package by traces. The traces may also be located on the packaging material and portions of the leads. In one embodiment, all of the test pads are located on a single surface of the packaging material of the package, which may allow for ease of electrical testing of the package.
Abstract: The present disclosure is directed to a microfluidic die that includes ejection circuitry and one time programmable memory with a minimal number of contact pads to external devices. The die includes a relatively large number of nozzles and a relatively small number of contact pads. The die includes decoding circuitry that utilizes the small number of contact pads to control the drive and ejection of the nozzles and the reading/writing of the memory with the same contact pads.
Type:
Grant
Filed:
March 8, 2018
Date of Patent:
December 10, 2019
Assignees:
STMicroelectronics Asia Pacific Pte Ltd, STMicroelectronics S.r.l., STMicroelectronics, Inc.
Inventors:
Teck Khim Neo, Mauro Pasetti, Franco Consiglieri, Luca Molinari, Andrea Nicola Colecchia, Simon Dodd
Abstract: An electronic device is integrated on a chip of semiconductor material having a main surface and a substrate region with a first type of conductivity. The electronic device has a vertical MOS transistor, formed in an active area having a body region with a second conductivity type.
Abstract: A MEMS resonator is equipped with a substrate, a moving structure suspended above the substrate in a horizontal plane formed by first and second axes, having first and second arms, parallel to one another and extending along the second axis, coupled at their respective ends by first and second transverse joining elements, forming an internal window. A first electrode structure is positioned outside the window and capacitively coupled to the moving structure. A second electrode structure is positioned inside the window. One of the first and second electrode structures causes an oscillatory movement of the flexing arms in opposite directions along the first horizontal axis at a resonance frequency, and the other electrode structure has a function of detecting the oscillation. A suspension structure has a suspension arm in the window. An attachment arrangement is coupled to the suspension element centrally in the window, near the second electrode structure.
Type:
Grant
Filed:
May 14, 2018
Date of Patent:
December 10, 2019
Assignee:
STMicroelectronics S.r.l.
Inventors:
Gabriele Gattere, Alessandro Tocchio, Carlo Valzasina
Abstract: A method for transmitting an Internet Protocol (IP) data packet from a first device to a second device, includes: transmitting a message from the first device to a telephone number associated with the second device; receiving the message at the second device and, in response to the message, determining a first IP address of the first device and transmitting a first IP packet from the second device to the first IP address; receiving the first IP packet at the first device and determining a source IP address of the first IP packet; and transmitting a second IP packet from the first device to the source IP address of the first IP packet.
Abstract: A circuit includes a first transistor and a second transistor having respective control terminals coupled to receive first and second bias voltages. A first electronic switch is coupled in series with, and between current paths of the first and second transistors to provide an output current line between a circuit output node and ground. A second electronic switch is selectively activated to a conductive state in order to provide a charge transfer current path between a bias node and a charge transfer node in the output current line. A third electronic switch is selectively activated to a conductive state in order to provide a charge transfer current path between the charge transfer node and the control terminal of the second transistor.
Abstract: A switching amplifier, such as a Class D amplifier, includes a current sensing circuit. The current sensing circuit is formed by replica loop circuits that are selectively coupled to corresponding output inverter stages of the switching amplifier. The replica loop circuits operated to produce respective replica currents of the output currents generated by the output inverter stages. A sensing circuitry is coupled to receive the replica currents from the replica loop circuits and operates to produce an output sensing signal as a function of the respective replica currents.
Type:
Application
Filed:
August 13, 2019
Publication date:
December 5, 2019
Applicant:
STMicroelectronics S.r.l.
Inventors:
Stefano RAMORINI, Alberto CATTANI, Germano NICOLLINI, Alessandro GASPARINI
Abstract: A control system for an ultrasound transmission/reception apparatus with a plurality of acoustic transducers for transmitting and receiving ultrasound signals may include driving device operatively coupled to the acoustic transducers and a control unit. The control unit may cyclically control the acoustic transducers in a transmission state for transmitting ultrasound signals, and in a reception state for receiving echoes of the transmitted ultrasound signals. The control unit may include an input stage which receives an external timing signal, and a processing stage which detects a first edge of the timing signal to determine the start time of a transmission phase during which the acoustic transducers are controlled in the transmission state, and a second edge of the timing signal to determine the stop time of a reception phase during which the acoustic transducers are controlled in the reception state.
Abstract: In an embodiment, a device may include a first sensor configured to generate first sensor data during a first time period and a second time period; a second sensor configured to be disabled during the first time period, the second sensor further being configured to generate second sensor data during the second time period; and a processor configured to determine a characteristic of the first sensor data during the first time period. The device may further include a classifying circuit configured to determine, during the first time period, whether the device has changed state based on the characteristic of the first sensor data, the classifying circuit further being configured to cause the second sensor to be enabled in response to a change in a state of the device.
Abstract: A packaged semiconductor device includes an insulating material forming a side surface of the packaged semiconductor device. An integrated-circuit chip is embedded in the insulating material and includes a communication circuit. A wiring system is embedded in the insulating material and electrically couples the integrated-circuit chip with a plurality of package contact elements. A first communication pad is formed in the side surface and is operatively coupled to the communication circuit to enable signal exchange through the first communication pad.
Type:
Grant
Filed:
February 6, 2018
Date of Patent:
December 3, 2019
Assignee:
STMicroelectronics S.r.l.
Inventors:
Federico Giovanni Ziglioli, Alberto Pagani
Abstract: Ejection device for fluid, comprising a solid body including: first semiconductor body including a chamber for containing the fluid, an ejection nozzle in fluid connection with the chamber, and an actuator operatively connected to the chamber to generate, in use, one or more pressure waves in the fluid such as to cause ejection of the fluid from the ejection nozzle; and a second semiconductor body including a channel for feeding the fluid to the chamber, coupled to the first semiconductor body, in such a way that the channel is in fluid connection with the chamber. The second semiconductor body integrates a damping cavity over which extends a damping membrane, the damping cavity and the damping membrane extending laterally to the channel for feeding the fluid.
Type:
Grant
Filed:
January 30, 2018
Date of Patent:
December 3, 2019
Assignees:
STMICROELECTRONICS S.R.L., STMICROELECTRONICS, INC.
Inventors:
Domenico Giusti, Marco Ferrera, Carlo Luigi Prelini, Simon Dodd