Abstract: A method can be used to measure a load driven by a switching amplifier having a differential input, an LC output demodulator filter and a feedback network between the amplifier output and the differential input. The amplifier is AC driven in a differential and in a common mode by applying a common. The feedback network provides feedback towards the differential input from downstream the LC demodulator filter by computing the impedance of the load as a function of the differential mode output current and the common mode output current. The feedback network provides feedback towards the differential input from upstream the LC demodulator filter by measuring the impedance value of the inductor of the LC demodulator filter, and computing the impedance of the load as a function of the differential mode output current, the common mode output current and the impedance value of the inductor of the LC demodulator filter.
Abstract: A sensing structure is presented for use in testing integrated circuits on a substrate. The sensing structure includes a probe region corresponding to a conductive region for connecting to the integrated circuit. A first sensing region at least partially surrounds the probe region. A plurality of sensing elements connects in series such that a first of the plurality of sensing elements has two terminals respectively connected to the first sensing region and the probe region. And a second of the plurality of sensing elements has two terminals respectively connected to the probe region and a first reference potential.
Abstract: The mirror group is formed by a monolithic frame bent along a bending line and including a first and a second supporting portions carrying, respectively, a first and a second chips forming two micromirrors made using MEMS technology. The first and second supporting portions are arranged on opposite sides of the bending line of the frame, angularly inclined with respect to each other. The mirror group is obtained by separating a shaped metal tape carrying a plurality of frames, having flexible electric connection elements. After attaching the chips, the frames are precut, bent along the bending line, and separated.
Abstract: A device voltage shifter includes a first voltage reference node, a second voltage reference node, an output node and a clamp node. A first high-voltage switching transistor of the voltage shifter has a first conduction terminal coupled to the first voltage reference node and a second conduction terminal coupled to the clamp node. A second high-voltage switching transistor of the voltage shifter has a first conduction terminal coupled to the clamp node and a second conduction terminal coupled to the second voltage reference node. A third high-voltage switching transistor of the voltage shifter has a first conduction terminal coupled to the first voltage reference node, a control terminal coupled to the clamp node, and a second conduction terminal coupled to the output node. A voltage regulator of the voltage shifter is coupled between the output node and the clamp node.
Abstract: A circuit includes a first transistor and a second transistor having respective control terminals coupled to receive first and second bias voltages. A first electronic switch is coupled in series with, and between current paths of the first and second transistors to provide an output current line between a circuit output node and ground. A second electronic switch is selectively activated to a conductive state in order to provide a charge transfer current path between a bias node and a charge transfer node in the output current line. A third electronic switch is selectively activated to a conductive state in order to provide a charge transfer current path between the charge transfer node and the control terminal of the second transistor.
Abstract: A microelectromechanical device includes a body of semiconductor material, which forms a cavity, a mobile structure, and an actuation structure. The actuation structure includes at least one first deformable element which faces the cavity and is mechanically coupled to the body and to the mobile structure, and a piezoelectric-actuation system which can be controlled so as to deform the first deformable element and cause a consequent rotation of the mobile structure. The mobile structure includes a supporting region and at least one first pillar region, the first pillar region being mechanically coupled to the first deformable element, the supporting region being set on the first pillar region and overlying at least part of the first deformable element.
Abstract: A light projection system includes a light module emitting a light beam and a movable mirror reflecting the light beam toward a surface. A graphics processing unit processes video data to compensate for a response of the light module. The response is an optical power of the light beam produced by the light module for a given forward current through the light module. A light source driver controls the light module as a function of the processed video data. Colors of the images from the video data produced on the surface by the light beam would otherwise not look as they are intended to look due to changing of the response of the light module, but the processing of the video data alters the video data such that the colors of the images from the video data produced on the surface look as they are intended to look.
Abstract: An electronic device includes a rectifier bridge that includes an input configured to be coupled to power over Ethernet (PoE) power sourcing equipment (PSE), and an output. A transistor is configured to selectively couple the output with a load. The electronic device includes a maintain power signature (MPS) device, and a control circuit. The control circuit is to maintain the transistor on when a load current is above a threshold, source current from the rectifier bridge to the MPS device when the load current is below the threshold, and switch the transistor to a diode configuration when the load current is below the threshold.
Abstract: A building structure includes a block of building material and a magnetic circuit buried in the block of building material. The structure also includes a plurality of sensing devices buried in the block of building material. Each sensing device may include a contactless power supplying circuit magnetically coupled with the magnetic circuit to generate a supply voltage when the magnetic circuit is subject to a variable magnetic field.
Abstract: A device includes digital signature generation circuitry. The digital signature generation circuitry, in operation, generates a digital signature of a digital message by computing a first public curve point as a scalar product of a first secret integer key and a base point of an elliptic curve and applying a transform to data of the received digital message.
Abstract: An encapsulated device of semiconductor material wherein a chip of semiconductor material is fixed to a base element of a packaging body through at least one pillar element having elasticity and deformability greater than the chip, for example a Young's modulus lower than 300 MPa. In one example, four pillar elements are fixed in proximity of the corners of a fixing surface of the chip and operate as uncoupling structure, which prevents transfer of stresses and deformations of the base element to the chip.
Type:
Grant
Filed:
March 28, 2016
Date of Patent:
June 25, 2019
Assignee:
STMicroelectronics S.r.l.
Inventors:
Alessandro Tocchio, Carlo Valzasina, Luca Guerinoni, Giorgio Allegato
Abstract: A laserbeam light source is controlled to avoid light sensitive regions around the laserbeam light source. One or more laserlight-sensitive regions are identified based on images of an area around the laserbeam light source, and indications of positions corresponding to the laserlight-sensitive regions are generated. The laserbeam light source is controlled based on the indications of the positions. The laserbeam light source may be controlled to deflect a laserlight beam away from laserlight-sensitive regions, to reduce an intensity of a laserlight beam directed towards a laserlight-sensitive region, etc. Motion estimation may be used to generate the indications of positions corresponding to the laserlight-sensitive regions.
Abstract: The present disclosure is directed to a method and system for compensating mismatches among sub-converters in a time interleaved analog digital converter structure. A digital finite impulse response (FIR) equalization filtering unit is coupled to outputs of the sub-converters. The FIR filtering unit includes a digital FIR filter dedicated to each sub-converter. The FIR filtering coefficient is adapted specifically for each sub-converter to achieve a compensation for sub-converter mismatches and inter-symbol interference (ISI) equalization.
Abstract: The power supply device comprises a supply transistor commanded by a command signal and providing electric power to a lighting module, and a driving means configured to selectively generate, depending on an instruction signal representative of the structure of said at least one lighting module, a first command signal able to command the supply transistor into an ohmic regime, a second command signal able to command the supply transistor into a pulse width modulation regime involving an alternation of ohmic regimes and blocked regimes, and a third command signal able to command the supply transistor into a saturated regime.
Abstract: A circuit includes an input transistor pair with first and second input transistors, the first input transistor having a control terminal configured to receive an input signal and a cascode transistor pair including a first and second cascode transistors having a common control node. A bias circuit has a bias input configured to receive the input signal and a first bias output coupled to the common node of the first and second cascode transistors. The bias circuit includes a signal tracking circuit operating to generate the first bias output to track the input signal. A pair of load transistors are coupled to the input transistor pair and biased by a second bias output of the bias circuit.
Type:
Grant
Filed:
May 17, 2018
Date of Patent:
June 18, 2019
Assignee:
STMicroelectronics S.r.l.
Inventors:
Stefano Ramorini, Alberto Cattani, Alessandro Gasparini, Germano Nicollini
Abstract: An active noise cancelling device including a sensor configured to convert acoustic signals into first audio signals and a speaker acoustically coupled to the sensor A control stage is configured to control the speaker based on the first audio signals to cause the speaker to produce cancelling acoustic waves that tend to suppress acoustic noise components in the acoustic signals. The control stage includes sigma-delta modulator digital filters.
Abstract: A transducer includes a first substrate and an integrated circuit coupled to the first substrate. A sensor is electrically coupled to the integrated circuit and includes a second substrate having a first surface and a second surface opposite the first surface. The second substrate has scribe boundaries defining an outer edge of the second substrate and a chamber extending from the first surface towards but not reaching the second surface. A chamber extends from the second surface to meet the chamber from first surface. Scribe trenches in the second surface at the scribe boundaries have a width from the scribe boundary towards the chamber extending from the second surface. A membrane extends over the first surface and over the chamber extending from first surface. A plate extends from the first surface of the second substrate over the membrane.
Type:
Grant
Filed:
July 17, 2017
Date of Patent:
June 18, 2019
Assignee:
STMicroelectronics S.r.l.
Inventors:
Matteo Perletti, Pietro Petruzza, Ilaria Gelmi, Laura Maria Castoldi
Abstract: A smart button for use in a network formed on a garment includes a housing and an antenna carried within the housing to communicate with elements of the network. A functional element is carried within the housing. An electronic circuit is carried within the housing and coupled to the antenna and the at least one functional element. The housing is formed by a stem carrying a head, and the antenna is housed within the head.
Abstract: A device for detecting the concentration of biological materials is formed in a body having a plurality of fluidic paths connectable to a multi-microbalance structure carrying a plurality of microbalances, each microbalance having a sensitive portion facing a reaction chamber. The body and the multi-microbalance structure are configured to be mechanically coupled together and each microbalance is configured to be coupled to a respective fluidic path. Each fluidic path includes an inlet, a duct and a liquid waste, each duct being configured to be coupled with a respective reaction chamber. The plurality of fluidic paths and microbalances form at least one first and one second reference cells and one first sample cell.
Type:
Grant
Filed:
June 26, 2018
Date of Patent:
June 11, 2019
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Ubaldo Mastromatteo, Gabriele Barlocchi, Flavio Francesco Villa
Abstract: An electronic system supports superior coupling by implementing a communication mechanism that provides at least for horizontal communication for example, on the basis of wired and/or wireless communication channels, in the system. Hence, by enhancing vertical and horizontal communication capabilities in the electronic system, a reduced overall size may be achieved, while nevertheless reducing complexity in printed circuit boards coupled to the electronic system. In this manner, overall manufacturing costs and reliability of complex electronic systems may be enhanced.