Abstract: Method for determining a first and a second calibrated value of atmospheric pressure, performed by an electronic apparatus comprising a fixed device and a first and a second movable device comprising respectively a first and a second movable barometer.
Type:
Application
Filed:
February 15, 2023
Publication date:
October 5, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Enri DUQI, Patrick FEDELI, Nicolo' MANCA, Silvia ADORNO
Abstract: Power module packaged in a housing accommodating a carrying substrate forming a plurality of connection regions of conductive material. An electronic component is arranged inside the housing, attached to a connection region of the plurality of connection regions. An electrical connector, coupled to the electronic component, extends towards the main surface of the housing and is accessible from the outside of the housing. The electrical connector has a tubular portion forming a pillar fixed to a pin which protrudes from the greater surface of the housing. The housing includes a packaging mass of electrically insulating material that embeds the pillar and blocks it therein.
Abstract: A MEMS tri-axial accelerometer is provided with a sensing structure having: a single inertial mass, with a main extension in a horizontal plane defined by a first horizontal axis and a second horizontal axis and internally defining a first window that traverses it throughout a thickness thereof along a vertical axis orthogonal to the horizontal plane; and a suspension structure, arranged within the window for elastically coupling the inertial mass to a single anchorage element, which is fixed with respect to a substrate and arranged within the window, so that the inertial mass is suspended above the substrate and is able to carry out, by the inertial effect, a first sensing movement, a second sensing movement, and a third sensing movement in respective sensing directions parallel to the first, second, and third horizontal axes following upon detection of a respective acceleration component.
Abstract: At start-up of a microelectromechanical system (MEMS) gyroscope, the drive signal is inhibited, and the phase, frequency and amplitude of any residual mechanical oscillation is sensed and processed to determine a process path for start-up. In the event that the sensed frequency of the residual mechanical oscillation is a spurious mode frequency and a quality factor of the residual mechanical oscillation is sufficient, an anti-phase signal is applied as the MEMS gyroscope drive signal in order to implement an active dampening of the residual mechanical oscillation. A kicking phase can then be performed to initiate oscillation. Also, in the event that the sensed frequency of the residual mechanical oscillation is a resonant mode frequency with sufficient drive energy, a quadrature phase signal with phase lock loop frequency control and amplitude controlled by the drive energy is applied as the MEMS gyroscope drive signal in order to induce controlled oscillation.
Abstract: A MEMS device having a body with a first and a second surface, a first portion and a second portion. The MEMS device further has a cavity extending in the body from the second surface; a deformable portion between the first surface and the cavity; and a piezoelectric actuator arranged on the first surface, on the deformable portion. The deformable portion has a first region with a first thickness and a second region with a second thickness greater than the first thickness. The second region is adjacent to the first region and to the first portion of the body.
Abstract: Electronic device comprising at least a first and a second branch, each branch including a first and a second transistor arranged in series to each other and formed in respective dice of semiconductor material. The dice are sandwiched between a first substrate element and a second substrate element. The first and the second substrate elements are formed each by a multilayer including a first conductive layer, a second conductive layer and an insulating layer extending between the first and the second conductive layers. The first conductive layers of the first and the second substrate elements face towards the outside of the electronic device and define a first and a second main face of the electronic device. The second conductive layer of the first and the second substrate elements is shaped so as to form contact regions facing and in selective electrical contact with the plurality of dice.
Type:
Application
Filed:
March 23, 2023
Publication date:
October 5, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Cristiano Gianluca STELLA, Agatino MINOTTI, Francesco SALAMONE
Abstract: A detection device includes a pressure sensor, which provides a pressure signal indicative of an ambient pressure in an operating environment. An electrostatic-charge-variation sensor provides a charge-variation signal indicative of a variation of electrostatic charge associated with the operating environment, and processing circuitry is coupled to the pressure sensor and to the electrostatic-charge-variation sensor so as to receive the pressure signal and the charge-variation signal, and jointly processes the pressure signal and the charge-variation signal for detecting a variation between a first operating environment and a second operating environment for the detection device. The second operating environment is different from the first operating environment.
Abstract: A scanning laser projector includes an optical module and projection engine. The optical module includes a laser generator outputting a laser beam, and a movable mirror scanning the laser beam across an exit window defined through the housing in a scanning pattern wider than the exit window such that the laser beam is directed through the exit window in a projection pattern that is smaller than and within the scanning pattern. A first light detector is positioned about a periphery of the exit window such that as the movable mirror scans the laser beam in the scan pattern, at a point in the scan pattern where the laser beam is scanned across an interior of the housing and not through the exit window, the laser beam impinges upon the first light detector. The projection engine adjusts driving of the movable mirror based upon output from the first light detector.
Abstract: A particle detector formed by a body defining a chamber and housing a light source and a photodetector. A reflecting surface is formed by a first reflecting region and a second reflecting region that have a respective curved shape. The curved shapes are chosen from among portions of ellipsoidal, paraboloidal, and spherical surfaces. The first reflecting region faces the light source and the second reflecting region faces the photodetector. The first reflecting region has an own first focus, and the second reflecting region has an own first focus. The first focus of the first reflecting region is arranged in an active volume of the body, designed for detecting particles, and the photodetector is arranged on the first focus of the second reflecting region.
Abstract: Process for manufacturing a 3C-SiC layer, comprising the steps of: providing a wafer of 4H-SiC, provided with a surface; heating, through a LASER beam, a selective portion of the wafer at least up to a melting temperature of the material of the selective portion; allowing the cooling and crystallization of the melted selective portion, thus forming the 3C-SiC layer, a Silicon layer on the 3C-SiC layer and a carbon-rich layer above the Silicon layer; completely removing the carbon-rich layer and the Silicon layer, exposing the 3C-SiC layer. If the Silicon layer is maintained on the 4H-SiC wafer, the process leads to the formation of a Silicon layer on the 4H-SiC wafer. The 3C-SiC or Silicon layer thus formed may be used for the integration, even only partial, of electrical or electronic components.
Type:
Application
Filed:
March 9, 2023
Publication date:
September 21, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Gabriele BELLOCCHI, Simone RASCUNA', Paolo BADALA', Anna BASSI
Abstract: A method of fabricating a thermoelectric converter that includes providing a layer of a Silicon-based material having a first surface and a second surface, opposite to and separated from the first surface by a Silicon-based material layer thickness; forming a plurality of first thermoelectrically active elements of a first thermoelectric semiconductor material having a first Seebeck coefficient, and forming a plurality of second thermoelectrically active elements of a second thermoelectric semiconductor material having a second Seebeck coefficient, wherein the first and second thermoelectrically active elements are formed to extend through the Silicon-based material layer thickness, from the first surface to the second surface; forming electrically conductive interconnections in correspondence of the first surface and of the second surface of the layer of Silicon-based material, for electrically interconnecting the plurality of first thermoelectrically active elements and the plurality of second thermoelectri
Type:
Application
Filed:
May 24, 2023
Publication date:
September 21, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Paolo FERRARI, Flavio Francesco VILLA, Lucia ZULLINO, Andrea NOMELLINI, Luca SEGHIZZI, Luca ZANOTTI, Bruno MURARI, Martina SCOLARI
Abstract: A switching DC-DC converter circuit includes a switching stage having an input node receiving an input voltage and an output node producing an output voltage. The converter includes feedback loop circuitry coupled to the output node of the switching stage to produce, at a respective output node, a control signal of the converter circuit as a function of a difference between the output voltage and a reference voltage. The converter includes test loop circuitry arranged between an output node of the feedback loop circuitry and the output node of the switching stage. The test loop, when enabled, sources a current to the output node of the switching stage or sinks a current from the output node of the switching stage as a function of a value of the control signal of the converter circuit. The feedback loop circuitry is calibrated during a test phase of the switching DC-DC converter circuit.
Type:
Application
Filed:
March 15, 2023
Publication date:
September 21, 2023
Applicant:
STMicroelectronics S.r.l.
Inventors:
Alberto CATTANI, Alessandro GASPARINI, Stefano RAMORINI
Abstract: An apparatus for growing semiconductor wafers, in particular of silicon carbide, wherein a chamber houses a collection container and a support or susceptor arranged over the container. The support is formed by a frame surrounding an opening accommodating a plurality of arms and a seat. The frame has a first a second surface, opposite to each other, with the first surface of the frame facing the support. The arms are formed by cantilever bars extending from the frame into the opening, having a maximum height smaller than the frame, and having at the top a resting edge. The resting edges of the arms define a resting surface that is at a lower level than the second surface of the frame. The seat has a bottom formed by the resting surface.
Type:
Application
Filed:
May 22, 2023
Publication date:
September 21, 2023
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Ruggero ANZALONE, Nicolo' FRAZZETTO, Francesco La Via
Abstract: A micromechanical device includes a semiconductor body, a first mobile structure, an elastic assembly, coupled to the first mobile structure and to the semiconductor body and adapted to undergo deformation in a direction, and at least one abutment element. The elastic assembly is configured to enable an oscillation of the first mobile structure as a function of a force applied thereto. The first mobile structure, the abutment element and the elastic assembly are arranged with respect to one another in such a way that: when the force is lower than a force threshold, the elastic assembly operates with a first elastic constant; and when the force is greater than the threshold force, then the first mobile structure is in contact with the abutment element, and a deformation of the elastic assembly is generated, which operates with a second elastic constant different from the first elastic constant.
Type:
Application
Filed:
May 23, 2023
Publication date:
September 21, 2023
Applicant:
STMicroelectronics S.r.l.
Inventors:
Jean Marie DARMANIN, Carlo VALZASINA, Alessandro TOCCHIO, Gabriele GATTERE
Abstract: A method for manufacturing an electronic device includes forming, at a front side of a solid body of 4H-SiC having a first electrical conductivity, at least one implanted region having a second electrical conductivity opposite to the first electrical conductivity; forming, on the front side, a 3C-SiC layer; and forming, in the 3C-SiC layer, an ohmic contact region which extends through the entire thickness of the 3C-SiC layer, up to reaching the implanted region. A silicon layer may be present on the 3C-SiC layer; in this case, the ohmic contact also extends through the silicon layer.
Abstract: Method for manufacturing an electronic device, comprising the steps of: forming, at a front side of a solid body of 4H-SiC having a first electrical conductivity, at least one implanted region having a second electrical conductivity opposite to the first electrical conductivity; forming, on the front side, a 3C-SiC layer; and forming, in the 3C-SiC layer, an ohmic contact region which extends through the entire thickness of the 3C-SiC layer, up to reaching the implanted region. A silicon layer may be present on the 3C-SiC layer; in this case, the ohmic contact also extends through the silicon layer.
Abstract: A method for real-time quantitative detection of single-type, target nucleic acid sequences amplified using a PCR in a microwell, comprising introducing in the microwell a sample comprising target nucleic acid sequences, magnetic primers, and labelling probes; performing an amplification cycle to form labelled amplicons; attracting the magnetic primers to a surface through a magnetic field to form a layer including labelled amplification products and free magnetic primers; and detecting the labelled amplification products in the layer with a surface-specific reading method.
Type:
Grant
Filed:
January 26, 2021
Date of Patent:
September 19, 2023
Assignee:
STMICROELECTRONICS S.r.l.
Inventors:
Lucio Renna, Clelia Carmen Galati, Natalia Maria Rita Spinella
Abstract: Current absorption management for an electronic fuse coupled between an electrical supply source node and an electrical load node selectively controls a high current electronic switch and a low current electronic switch coupled in parallel between the electrical supply source node and the electrical load node. The high current and low current electronic switches are alternatively actuated: in a first mode where the high current electronic switch is turned on and the low current electronic switch is turned off, and in a second mode where the high current electronic switch is turned off and the low current electronic switch is turned on. Change to the second mode may be made in response to a standby state or a sensing of a lower current in the electrical load. Conversely, change to the first mode may be made in response to a sensing of a higher current in the electrical load.
Type:
Grant
Filed:
December 8, 2021
Date of Patent:
September 19, 2023
Assignee:
STMicroelectronics S.r.l.
Inventors:
Enrico Castro, Giovanni Susinna, Vincenzo Randazzo, Mirko Dondini, Calogero Andrea Trecarichi
Abstract: A semiconductor chip is mounted to a chip mounting portion of a leadframe which further includes and one or more leads in the leadframe arranged facing the chip mounting portion. The lead lies in a first plane and the chip mounting portion lies in a second plane, the first plane and the second plane mutually offset with a gap therebetween. An electrical component (such as a capacitor) is arranged on the chip mounting portion and extends vertically between the first plane and the second plane.
Type:
Grant
Filed:
January 16, 2020
Date of Patent:
September 19, 2023
Assignee:
STMicroelectronics S.r.l.
Inventors:
Alberto Arrigoni, Giovanni Graziosi, Aurora Sanna
Abstract: The present disclosure relates to an electronic device comprising a first capacitor and a quartz crystal coupled in series between a first node and a second node; an inverter coupled between the first and second nodes; a first variable capacitor coupled between the first node and a third node; and a second variable capacitor coupled between the second node and the third node.