Abstract: A nozzle that extends telescopically upward is used to elevate a wafer without contacting the wafer. The nozzle includes a stationary hollow cylinder, closed at its lower end and open at its upper end, within which a spool is disposed to slide vertically. In its lowest position the spool is spaced from the closed bottom of the cylinder, and purified water is supplied under pressure to the space. A passage extends vertically through the spool, and the water is discharged at the upper end of the spool from the passage. As a wafer is lowered toward the upper end of the spool, the wafer partially impedes the discharge, increasing the pressure in the space below the spool. The increased pressure drives the spool and the wafer upward, but the wafer never comes into contact with the wafer because the discharge of water creates a protective cushion between them.
Abstract: Technique including a method 400 and an apparatus 100 for chemical mechanical polishing using a plurality of carrier devices 123 rotatably coupled to a turret means. The apparatus 100 includes a turret and plurality of rotatable polishing surfaces 111 positioned around the turret. The apparatus also includes a plurality of carrier devices 123 rotatably coupled to the turret, where the carrier devices 123 are each adapted to hold a workpiece to be polished on at least one of the rotatable polishing surfaces. Each of the carrier devices is operably independently to each other during a process for chemical mechanical polishing.
Abstract: A method and apparatus for planarizing silicon wafers initially having wavy surfaces, such as might result from having been cut from a boule by means of a wire saw. A vacuum is applied to one side of a porous ceramic plate, and a perforated resilient pad is applied to the opposite side of the porous ceramic plate. The resilient pad is affixed to the ceramic plate by a peelable adhesive, and the vacuum extends through the perforations of the resilient pad to permit a wafer to be mounted on the exposed side of the resilient pad. The perforations in the resilient pad are distributed uniformally across the wafer, so that the atmospheric pressure pushing the wafer against the resilient pad is also uniform across the wafer. However, the wafer is not deformed while it is held in place for grinding. Because the wafer is not held in an elastically deformed condition while it is ground, the wafer has no tendency to spring back to its original wavy shape.
Abstract: Apparatus for use in a semiconductor wafer polishing machine of a type in which the wafer is picked up and held by a suction cup effect between the wafer and a resilient diaphragm on the wafer carrier. The apparatus permits the presence or absence of a wafer on the carrier to be sensed so that this information can be used in controlling the operation of the machine. In normal operation, a vacuum is applied to a downwardly-opening plenum that is covered by a resilient diaphragm. The present invention is the addition to the wafer carrier of an air conduit opening into the plenum through an air port and connected to an orifice so that air can flow through the orifice, through the air conduit and the air port into the plenum at a rate that is slow relative to the capacity of the vacuum pump. The present invention further requires the addition of a pressure sensor for sensing the pressure in the air conduit or alternatively in the vacuum conduit.
Abstract: Programmable electric and hydraulic machine for shaping laps such as are used to form or polish opthalmic lenses, comprises vertically oscillatable, longitudinally displaceable arm carrying a point cutter which is functionally engageable by radially extensible, rotating lap carried by upstanding spindle. Alternately, spindle is operable by oscillating drive when lap is radially retracted. Toroidal or spherical laps having a large range of variance in two dimensions, i.e. curvatures, are thus obtained by using relevant cutter and lap locations, as well as appropriate drive settings. Concave laps are produced by exchanging locations of lap and cutter so workpiece is carried by vertical-moving arm.
Abstract: A programmable machine for automatically cutting and/or resurfacing a selected arcuate pattern upon either a convex or concave lap, particularly such laps as may then be used for forming and polishing opthalmic lenses. A lap positioning unit and a cutter positioning unit are located respectively on adjacent upright and horizontal supports so as to bring the lap and cutter into mutual engagement, each unit initially being longitudinally adjustable from a respective pivot point by a selected amount so as to determine the particular arcuate curvature obtained, which curvatures jointly form the two-dimentional arcuate pattern chosen for the lap face. In operation, the lap is oscillated vertically and a rotary milling cutter is driven back and forth transverse thereto.
Abstract: A chuck assembly particlarly useful to position a lap or lens blank at the end of an oscillatory spindle for opthalmic lens grinding; comprises an opposing pair of jaws, one of which is fixed and the other a loosely hanging plate, laterally and longitudinally tiltable between engage and disengage positions by selective action of a fluid-operated piston having a conic contact head which distally abuts the jaw plate for leveraged closing fulcrumed against a workpiece-adjacent edge, in opposition to resilient means biased to hold the jaw open.