Patents Assigned to Stratasys, Inc.
-
Publication number: 20230373159Abstract: A method of forming a three-dimensional object comprises the steps of forming a layer of a particulate composition, selectively depositing a liquid composition onto the layer of the particulate composition in accordance with computer data corresponding to the shape of at least a portion of a three-dimensional object, and repeating the steps a plurality of times to form a three-dimensional object. The particulate composition comprises a plurality of first particles that comprise a resin component comprising a first resin, the first resin comprising a first resin polymerizable group. Either or both of the particulate composition and the liquid composition comprise an initiator capable of initiating polymerization of at least the first resin. At least the first resin undergoes melting and polymerization in a plurality of the locations where the liquid composition has been selectively deposited.Type: ApplicationFiled: July 26, 2023Publication date: November 23, 2023Applicant: Stratasys, Inc.Inventors: Johan Franz Gradus Antonius JANSEN, Rudolfus Antonius Theodorus Maria VAN BENTHEM, Paulus Franciscus Anna BUIJSEN, Franciscus Johannes Marie DERKS, Mark Petrus Franciscus PEPELS, Alfred Jean Paul BUCKMANN
-
Patent number: 11794411Abstract: A method for 3D printing a part in a layer-wise manner includes providing a pool of polymerizable liquid in a vessel over a build window and positioning a downward-facing build platform in the pool, thereby defining a build region above the build window. The method includes selectively curing a volume of polymerizable liquid in the build region by imparting electromagnetic radiation through the build window to form a printed layer of the part adhered to the build platform and scanning at least a portion of the build window with monochromatic, polarized light along a plane of incidence. The method includes measuring a change in intensity and polarity of the light to obtain information about the printed layer. The method includes raising the build platform to a height of a next layer to be printed and modifying the electromagnetic energy imparted into the next layer based upon the obtained information to print a next layer.Type: GrantFiled: December 6, 2021Date of Patent: October 24, 2023Assignee: Stratasys, Inc.Inventor: J. Samuel Batchelder
-
Patent number: 11780143Abstract: A supply of build material such as a spool or cartridge is instrumented with a data tag that includes information about the build material. A three-dimensional printer, or a tag reader in communication therewith (directly or indirectly), can read the information from the tag for a determination as to how to use the build material during fabrication of a three-dimensional object.Type: GrantFiled: November 2, 2021Date of Patent: October 10, 2023Assignee: Stratasys, Inc.Inventors: Ariel Douglas, Robert J. Steiner, Aric Lynn Jennings, William B. Buel, Anthony D. Moschella
-
Patent number: 11780156Abstract: An extruder or other similar tool head of a three-dimensional printer is slidably mounted along a feedpath of build material so that the extruder can move into and out of contact with a build surface according to whether build material is being extruded. The extruder may be spring-biased against the forward feedpath so that the extruder remains above the build surface in the absence of applied forces, and then moves downward into a position for extrusion when build material is fed into the extruder. In another aspect, modular tool heads are disclosed that can be automatically coupled to and removed from the three-dimensional printer by a suitable robotics system. A tool crib may be provided to store multiple tool heads while not in use.Type: GrantFiled: March 9, 2022Date of Patent: October 10, 2023Assignee: Stratasys, Inc.Inventors: Peter Joseph Schmehl, Aljosa Kemperle, Stewart Schmehl
-
Patent number: 11760020Abstract: A low pull force system for feeding a filament along a feed path from a source to a liquefier in a 3D printer includes a low compressive force loading drive for advancing filament from the source, a feed drive for advancing filament into the liquefier, and an in-line accumulator comprising a telescoping joint positioned in the feed path between the loading drive and the feed drive. When the telescoping joint is in a contracted position, the loading drive activates to feed filament into the feed path at a rate faster than a rate at which the feed drive advances filament into the liquefier, causing the telescoping joint to expand and accrue a slack of filament in the feed path. When the telescoping joint reaches an extended position, the loading drive deactivates while the feed drive continues to advance filament into the liquefier, and the slack of filament is consumed.Type: GrantFiled: October 27, 2022Date of Patent: September 19, 2023Assignee: Stratasys, Inc.Inventors: Cody Smith, Christopher Herbst, Ross Michalkiewicz, Shawn Michael Koop, Jordan Nadeau
-
Patent number: 11760015Abstract: A 3D printer includes a gantry configured to move in a plane substantially parallel to a x-y build plane and a print head configured to extrude molten material to print a 3D part in a layer-by-layer process. The 3D printer includes a platen configured to support the part being printed in the layer by layer process and positionable with a primary Z positioner along a z-axis substantially normal to the x-y build plane. The 3D printer includes a local Z positioner moved by the gantry, the local Z positioner comprising a linear motor configured to move the print head in the z-direction and having an operable range of motion extending from a nominal build position at which a nozzle of the print head is positioned in the x-y build plane to a raised position above the x-y build plane.Type: GrantFiled: December 30, 2021Date of Patent: September 19, 2023Assignee: Stratasys, Inc.Inventors: Paul Joseph Leavitt, Thomas Joseph McDonough, Zachary James Davis
-
Patent number: 11760001Abstract: A consumable assembly for supplying filament to a 3D printer having two or more receptacles having different geometric configurations, the 3D printer builds parts by material extrusion. The consumable assembly includes a container configured to retain a supply of a first filament, and a first filament guide tube having a length, the first filament guide tube having an inlet end attached to the first container and an outlet end, The consumable assembly includes a key having a geometric configuration allowing the key to be plugged into only one receptacle of the two or more receptacles of the 3D printer, the key comprising a conduit having an entrance and an exit, a coupling portion, and an engagement portion, wherein the entrance to the conduit is coupled to the outlet end of the first filament guide tube to thereby form a closed filament path from the first container to the 3D printer.Type: GrantFiled: March 30, 2020Date of Patent: September 19, 2023Assignee: Stratasys, Inc.Inventors: William J. Swanson, Brett Johnson
-
Patent number: 11707891Abstract: A method for additive manufacturing includes: at a build tray arranged over a build window and containing a resin reservoir of a resin, heating the resin reservoir toward a target bulk resin temperature less than a heat deflection temperature of the resin in a photocured state; at a resin interface between a surface of the build window and the resin reservoir, heating an interface layer of the resin reservoir toward a target reaction temperature; and, in response to the resin reservoir exhibiting a first temperature proximal the target bulk resin temperature and to the interface layer exhibiting a second temperature proximal the target reaction temperature: at the resin interface, selectively photocuring a first volume of the resin to form a first layer of a build adhered to a build platform; and retracting the build platform away from the build window.Type: GrantFiled: October 13, 2022Date of Patent: July 25, 2023Assignee: Stratasys, Inc.Inventors: Joel Ong, Christopher Prucha, Stephanie Benight, Bill Buel
-
Patent number: 11660807Abstract: A layer-by layer method for additive manufacturing that includes: photocuring a first volume of resin to form a layer of a build at an upper surface of a separation membrane laminated over a build window; injecting a fluid into an interstitial region between the separation membrane and the build window; retracting the build from the build window; evacuating the fluid from the interstitial region; and photocuring a second volume of liquid resin to form a subsequent layer of the build between an upper surface of a separation membrane and the previous layer of the build.Type: GrantFiled: August 17, 2021Date of Patent: May 30, 2023Assignee: Stratasys, Inc.Inventors: Christopher Prucha, Joel Ong
-
Patent number: 11654614Abstract: A method of 3D printing a part with an extrusion-based additive manufacturing system includes providing a filament having a semi-crystalline material as a majority component of a polymeric matrix to a liquefier having a liquefier tube having an overall length between an inlet end and an outlet end. An upper portion of the liquefier tube adjacent the inlet end has a first length and a first cross-sectional area substantially perpendicular to a longitudinal axis and a lower portion of the liquefier tube adjacent the outlet end has a second length and a second cross-sectional area substantially perpendicular to the longitudinal axis, wherein the first cross-sectional area is greater than the second cross-sectional area. The method includes driving the filament into a melt zone located within the upper portion of the liquefier tube at a selected rate based upon a desired extrusion rate. The filament is melted within the melt zone forming a melt pool in the liquefier tube to provide the selected extrusion rate.Type: GrantFiled: July 23, 2018Date of Patent: May 23, 2023Assignee: Stratasys, Inc.Inventors: Vittorio L. Jaker, Paul Leavitt, Benjamin N. Dunn
-
Patent number: 11643754Abstract: A consumable filament for use in an extrusion-based additive manufacturing system, where the consumable filament comprises a core portion of a matrix of a first base polymer and particles dispersed within the matrix, and a shell portion comprising a same or a different base polymer. The consumable filament is configured to be melted and extruded to form roads of a plurality of solidified layers of a three-dimensional part, and where the roads at least partially retain cross-sectional profiles corresponding to the core portion and the shell portion of the consumable filament and retain the particles within the roads of the printed part and do not penetrate the outer surface of the shell portion.Type: GrantFiled: January 23, 2020Date of Patent: May 9, 2023Assignee: Stratasys, Inc.Inventors: Christopher Scott Graley, Christine Lawrence Sumerel, James E. Orrock
-
Patent number: 11642851Abstract: A multiple axis robotic additive manufacturing system includes a robotic arm movable in six degrees of freedom. The system includes a build platform movable in at least two degrees of freedom and independent of the movement of the robotic arm to position the part being built to counteract effects of gravity based upon part geometry. The system includes an extruder mounted at an end of the robotic arm. The extruder is configured to extrude at least part material with a plurality of flow rates, wherein movement of the robotic arm and the build platform are synchronized with the flow rate of the extruded material to build the 3D part.Type: GrantFiled: October 10, 2022Date of Patent: May 9, 2023Assignee: Stratasys, Inc.Inventor: Clint Newell
-
Patent number: 11599685Abstract: The hardware and software properties of a three-dimensional printer can be queried and applied to select suitable directly printable models for the printer, or to identify situations where a new machine-ready model must be generated. The properties may be any properties relevant to fabrication including, e.g., physical properties of the printer, printer firmware, user settings, hardware configurations, and so forth. A printer may respond to configuration queries with a dictionary of capabilities or properties, and this dictionary may be used to select suitable models, or determine when a new model must be created. Similarly, when a printable model is sent to the printer, metadata for the printable model may be compared to printer properties in the dictionary to ensure that the model can be fabricated by the printer.Type: GrantFiled: April 26, 2021Date of Patent: March 7, 2023Assignee: Stratasys, Inc.Inventors: Alison N. Leonard, Joseph Sadusk
-
Patent number: 11590712Abstract: An additive manufacturing system configured to: during a first build cycle of an additive manufacturing process for manufacturing a first layer of a build, sampling a first set of sensor data streams via the sensor suite; calculate a first likelihood of failure of the build based on the first set of sensor data streams; in response to calculating the first likelihood of failure within a first likelihood range, flag the build to indicate the first likelihood of failure; and in response to calculating the first likelihood of failure within a second likelihood range greater than the first likelihood range, pause the additive manufacturing process, and notify an operator of the additive manufacturing system of the first likelihood of failure.Type: GrantFiled: November 3, 2021Date of Patent: February 28, 2023Assignee: Stratasys, Inc.Inventors: Joel Ong, Christopher Prucha
-
Patent number: 11584081Abstract: A method for additive manufacturing includes: at a build tray arranged over a build window and containing a resin reservoir of a resin, heating the resin reservoir toward a target bulk resin temperature less than a heat deflection temperature of the resin in a photocured state; at a resin interface between a surface of the build window and the resin reservoir, heating an interface layer of the resin reservoir toward a target reaction temperature; and, in response to the resin reservoir exhibiting a first temperature proximal the target bulk resin temperature and to the interface layer exhibiting a second temperature proximal the target reaction temperature: at the resin interface, selectively photocuring a first volume of the resin to form a first layer of a build adhered to a build platform; and retracting the build platform away from the build window.Type: GrantFiled: December 13, 2021Date of Patent: February 21, 2023Assignee: Stratasys, Inc.Inventors: Joel Ong, Christopher Prucha, Stephanie Benight, Bill Buel
-
Patent number: 11571858Abstract: A method of printing a hollow part with a robotic additive manufacturing system includes extruding thermoplastic material onto a build platform movable in at least two degrees of freedom in a helical pattern along a continuous 3D tool path with an extruder mounted on a robotic arm, to thereby print a hollow member having a length and a diameter. The method includes orienting the hollow member during printing by moving the build platform based on a geometry of the hollow member wherein the movement of the build platform and the movement of the robotic arm are synchronized to print the part without support structures.Type: GrantFiled: July 19, 2021Date of Patent: February 7, 2023Assignee: Stratasys, Inc.Inventor: Clint Newell
-
Patent number: 11498280Abstract: A method for additive manufacturing includes: at a build tray arranged over a build window and containing a resin reservoir of a resin, heating the resin reservoir toward a target bulk resin temperature less than a heat deflection temperature of the resin in a photocured state; at a resin interface between a surface of the build window and the resin reservoir, heating an interface layer of the resin reservoir toward a target reaction temperature; and, in response to the resin reservoir exhibiting a first temperature proximal the target bulk resin temperature and to the interface layer exhibiting a second temperature proximal the target reaction temperature: at the resin interface, selectively photocuring a first volume of the resin to form a first layer of a build adhered to a build platform; and retracting the build platform away from the build window.Type: GrantFiled: October 8, 2020Date of Patent: November 15, 2022Assignee: Stratasys, Inc.Inventors: Joel Ong, Christopher Prucha, Stephanie Benight, Bill Buel
-
Patent number: 11498281Abstract: A multiple axis robotic additive manufacturing system includes a robotic arm movable in six degrees of freedom. The system includes a build platform movable in at least two degrees of freedom and independent of the movement of the robotic arm to position the part being built to counteract effects of gravity based upon part geometry. The system includes an extruder mounted at an end of the robotic arm. The extruder is configured to extrude at least part material with a plurality of flow rates, wherein movement of the robotic arm and the build platform are synchronized with the flow rate of the extruded material to build the 3D part.Type: GrantFiled: October 25, 2021Date of Patent: November 15, 2022Assignee: Stratasys, Inc.Inventor: Clint Newell
-
Patent number: 11498279Abstract: A method for additive manufacturing includes: at a build tray arranged over a build window and containing a resin reservoir of a resin, heating the resin reservoir toward a target bulk resin temperature less than a heat deflection temperature of the resin in a photocured state; at a resin interface between a surface of the build window and the resin reservoir, heating an interface layer of the resin reservoir toward a target reaction temperature; and, in response to the resin reservoir exhibiting a first temperature proximal the target bulk resin temperature and to the interface layer exhibiting a second temperature proximal the target reaction temperature: at the resin interface, selectively photocuring a first volume of the resin to form a first layer of a build adhered to a build platform; and retracting the build platform away from the build window.Type: GrantFiled: October 8, 2020Date of Patent: November 15, 2022Assignee: Stratasys, Inc.Inventors: Joel Ong, Christopher Prucha, Stephanie Benight, Bill Buel
-
Patent number: 11491723Abstract: A consumable assembly for supplying filament to a 3D printer includes a spool-less filament coil, a payout tube, and a compressive band. The coil of filament is wound in a configuration having a generally cylindrical outer perimeter and an open interior; the coil has a payout hole extending from an inner layer of the coil to an outer layer of the coil and includes a filament strand configured to be withdrawn through the payout hole in response to a pull force, to thereby withdraw filament from the interior of the coil. The payout tube is disposed in the payout hole and provides a filament port. A compressive band is disposed over the outer layer and is configured to exert a compressive radial force on the coil so that the coil maintains its cylindrical shape without deformation, and the filament strand may be drawn through the filament outlet free of kinks, twists or tangles.Type: GrantFiled: July 29, 2020Date of Patent: November 8, 2022Assignee: Stratasys, Inc.Inventors: Caroline Jo Markman, Timothy Hjelsand, Kevin C. Johnson