Patents Assigned to Sumitomo Metal Mining Co., Ltd.
  • Publication number: 20210328283
    Abstract: Provided is a more efficient dry refining process for improving the recovery rate of phosphorus-free valuable metals from waste lithium ion batteries. The present invention provides a method for recovering valuable metals from waste lithium ion batteries, said method comprises a melting step S4 for melting the waste lithium ion batteries and obtaining a molten substance and a slag separation step S5 for separating slag from the molten substance and recovering an alloy containing valuable metals, wherein in the melting step, flux containing a calcium compound is added to the waste lithium ion batteries such that the mass ratio between silicon dioxide and calcium oxide in the slag becomes 0.50 or less and the mass ratio between calcium oxide and aluminum oxide falls in the range of 0.30 to 2.00.
    Type: Application
    Filed: July 11, 2019
    Publication date: October 21, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yu Yamashita, Ryo Togashi
  • Patent number: 11136241
    Abstract: Heat ray shielding fine particles contain calcium lanthanum boride fine particles represented by a general formula CaxLa1-xBm, a shape of each fine particle of the calcium lanthanum boride fine particles satisfies at least one of the following: 1) when scattering intensity of the calcium lanthanum boride fine particles diluted and dispersed in a solvent is measured using small-angle X-ray scattering, value Ve of a slope of a straight line is ?3.8?Ve??1.5, 2) the particle shape is a flat cylindrical shape, or a flat spheroidal (wherein a length of a long axis is d and a length of a short axis is h) shape, with a value of aspect ratio d/h being 1.5?d/h?20.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: October 5, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kenji Adachi, Satoshi Yoshio
  • Publication number: 20210305568
    Abstract: To provide a cathode active material capable of reducing cathode resistance of a secondary battery by enhancing electron conductivity thereof without reducing discharge capacity of the secondary battery. Lanthanum compound particles each having a perovskite-type structure are dispersed on surfaces of secondary particles of a lithium transition metal-containing composite oxide and/or in gaps or grain boundaries between primary particles thereof. The lanthanum compound particles have a cross-sectional average particle size of 0.70 ?m or less. The number of lanthanum compound particles present per unit area of the cross sections of the secondary particles is 0.03 particles/?m2 to 0.10 particles/?m2, and the number of lanthanum compound particles present per unit area of the surfaces of the secondary particles is 0.01 particles/m?2 to 0.25 particles/?m2. The content of lanthanum with respect to the entire cathode active material is within a range of 0.1% by mass to 5% by mass.
    Type: Application
    Filed: July 3, 2019
    Publication date: September 30, 2021
    Applicants: SUMITOMO METAL MINING CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoshi Kanada, Tetsutaro Hayashi, Ryuta Sugiura
  • Publication number: 20210305569
    Abstract: A method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery includes crystallizing a nickel-cobalt-manganese composite hydroxide by neutralizing a salt containing at least nickel, a salt containing at least cobalt, and a salt containing at least manganese; and firing a lithium mixture obtained by mixing the nickel-cobalt-manganese composite hydroxide with a lithium compound in an oxygen atmosphere to obtain a lithium-metal composite oxide, wherein in the crystallization process, an oxygen concentration in an atmosphere above a solution surface of the aqueous reaction solution is controlled in a range of 0.2% to 2% by volume, a temperature of the aqueous reaction solution is controlled between 38° C. to 45° C., a pH value of the aqueous reaction solution is controlled between 11.0 to 12.5, and a dissolved nickel concentration in the aqueous reaction solution is controlled in a range of 300 mg/L to 900 mg/L.
    Type: Application
    Filed: May 14, 2021
    Publication date: September 30, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takaaki Ando, Haruki Kaneda, Jun Suzuki
  • Patent number: 11130315
    Abstract: Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent substrate that exhibit heat ray shielding properties and suppress scorching sensation on skin when employed in window materials and the like, also enable usage of communication devices, imaging devices, sensors, etc. that employ near-infrared light across these structures. The particles are composite tungsten oxide fine particles having a heat ray shielding function; and when a visible light transmittance is 85% when computed for light absorption by the particles alone, the average value of transmittance in the wavelength region from 800 nm to 900 nm is 30%-60%, and the average value of transmittance in the wavelength region from 1200 nm to 1500 nm is 20% or lower, and the transmittance at a wavelength of 2100 nm is 22% or lower.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: September 28, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mika Okada, Kenji Adachi
  • Patent number: 11133504
    Abstract: A nickel complex oxide having a carbon content of 0.15% by mass or lower.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: September 28, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Kawakami, Tomomichi Nihei
  • Publication number: 20210292927
    Abstract: A method for refining bismuth is provided, which comprises recovering bismuth from a solution obtained after recovery of noble metals from a copper electrolytic slime. The method comprises: 1) a neutralization step of adding alkali to an acid solution to adjust the pH to the range of 2.0 or more and 3.
    Type: Application
    Filed: January 30, 2017
    Publication date: September 23, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroshi TAKENOUCHI, Nobuyuki KAJI, Toshihiko NAGAKURA, Kenji TAKEDA, Satoshi ASANO
  • Publication number: 20210284547
    Abstract: Provided is a method for recovering scandium as scandium oxide that contains high-quality scandium and in which coarse particles having good handling properties are formed. This method for recovering scandium includes a step for carrying out an oxalate conversion process wherein oxalic acid is used in a solution containing scandium (scandium-containing solution) to generate a reaction in which the scandium is converted into an oxalate form, the method characterized in that the temperature of the reaction solution during the oxalate conversion process is 50° C. to 80° C.
    Type: Application
    Filed: August 21, 2017
    Publication date: September 16, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tatsuya Higaki, Masaki Imamura, Osamu Nakai, Hiroshi Kobayashi
  • Patent number: 11121368
    Abstract: An object of the present invention is to provide a positive electrode material for a nonaqueous electrolyte secondary battery, which is capable of inhibiting the gelation of a positive electrode composite material paste without decreasing the charge and discharge capacity and the output characteristics, when used as a positive electrode material for batteries. The positive electrode active material for a nonaqueous electrolyte secondary battery comprises a mixture containing a lithium metal composite oxide represented by a general formula LiaNi1-x-y-zCoxMnyMzO2 (wherein, 0.03?x?0.35, 0?y?0.35, 0?z?0.05, 0.97?a?1.30, and M is at least one type of element selected from V, Fe, Cu, Mg, Mo, Nb, Ti, Zr, W and Al) and an ammonium tungstate powder, wherein when 5 g of the positive electrode material is mixed with 100 ml of pure water, the mixture is stirred for 10 minutes and then left to stand for 30 minutes, and then the pH of a supernatant fluid at 25° C. was measured, the pH ranges from 11.2 to 11.8.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: September 14, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Koji Yamaji, Taira Aida, Ryozo Ushio
  • Publication number: 20210280864
    Abstract: Provided is a positive electrode active material with which a nonaqueous electrolyte secondary battery can be obtained that achieves both high energy density and output characteristics and thermal stability at the time of short-circuit owing to low conductivity. A positive electrode active material for a nonaqueous electrolyte secondary battery contains a lithium-nickel-manganese composite oxide containing a secondary particle formed of a plurality of flocculated primary particles. The lithium-nickel-manganese composite oxide is represented by General Formula (1): LidNi1-a-b-cMnaMbNbcO2-?, at least part of niobium is solid-solved in the primary particles, and a maximum niobium concentration within the primary particles is at least one time and up to three times an average niobium concentration within the primary particles.
    Type: Application
    Filed: August 31, 2017
    Publication date: September 9, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Haruki KANEDA, Yuki KOSHIKA
  • Patent number: 11108042
    Abstract: A positive electrode composite material for a lithium ion secondary battery that makes it possible to appropriately reduce the electric resistance in a positive electrode and to realize a high-performance lithium ion secondary battery. The positive electrode composite material to be used in the positive electrode of the lithium ion secondary battery includes a particulate positive electrode active material composed of a lithium composite oxide having a layered crystal structure including at least lithium, and a conductive oxide. Here, a particulate region where primary particles of the conductive oxide are aggregated, and a film-shaped region where the conductive oxide is formed in a film shape adhere to at least a part of the surface of the positive electrode active material. The average particle diameter based on cross-sectional TEM observation of primary particles in the particulate region is equal to or greater than 0.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: August 31, 2021
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Daisuke Horikawa, Ryuta Sugiura, Taira Aida, Satoshi Kanada
  • Patent number: 11105959
    Abstract: An infrared-shielding nanoparticle dispersion has a property whereby visible light is adequately transmitted, and light in the near-infrared region is adequately shielded. The infrared-shielding nanoparticles include a plural aggregate of electroconductive particles composed of a tungsten oxide expressed by the general formula WyOz (where W is tungsten, O is oxygen, and 2.2?z/y?2.999), and/or a composite tungsten oxide expressed by the general formula MxWyOz (where M is one or more elements selected from H, alkali metals, alkaline-earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I; W is tungsten; O is oxygen; 0.001?x/y?1.1; and 2.2?z/y?3.0).
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: August 31, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiromitsu Takeda, Kenji Adachi
  • Publication number: 20210265629
    Abstract: Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation.
    Type: Application
    Filed: May 12, 2021
    Publication date: August 26, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Atsushi FUKUI, Katsuya INOUE, Shuhei ODA, Hiroyuki TOYA
  • Publication number: 20210262060
    Abstract: Provided is a method for efficiently separating copper from nickel and cobalt from a sulfide containing nickel and cobalt together with copper. The present invention is a method for separating copper from nickel and cobalt, the method comprising pulverizing a sulfide containing copper and nickel and cobalt into a predetermined size and then stirring the resultant product under the condition having an oxidation-reduction potential (a reference electrode: a silver/silver chloride electrode) of less than 100 mV using an acid solution to perform a leaching treatment. In this separation method, a leach liquor in which nickel and cobalt are leached and a leach residue containing copper sulfate are produced as the result of the leaching treatment.
    Type: Application
    Filed: June 21, 2019
    Publication date: August 26, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tatsuya Higaki, Hiroshi Takenouchi, Hiroshi Kobayashi
  • Patent number: 11091655
    Abstract: There is provided a near-infrared shielding ultrafine particle dispersion body which has transparency in a visible light region, which has good near-infrared shielding properties, in which a blue haze phenomenon is suppressed, and which can be produced with high productivity, namely there is provided a near-infrared shielding ultrafine particle dispersion body in which ultrafine particles having near-infrared shielding properties are dispersed in a solid medium, wherein the ultrafine particles are composite tungsten oxide ultrafine particles, and a value of an XRD peak top intensity ratio of the composite tungsten oxide ultrafine particles is 0.13 or more when a value of the XRD peak intensity is set to 1, with plane (220) of a silicon powder standard sample (640c produced by NIST) as a reference.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: August 17, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hirofumi Tsunematsu, Takeshi Chonan
  • Patent number: 11084949
    Abstract: Provided are a near infrared absorbing fine particle dispersion liquid having an absorption ability in a near infrared region, a clear contrast, and applicable to offset printing, and a method for producing the same, an anti-counterfeit ink composition using the near infrared absorbing fine particle dispersion liquid and an anti-counterfeit printed matter using near infrared absorbing fine particles. Also provided are a near infrared absorbing fine particle dispersion liquid containing a solvent of one or more kinds selected from vegetable oils or vegetable oil-derived compounds; near infrared absorbing fine particles in an amount of 2 mass % or more and 25 mass % or less, selected from one or more kinds of hexaboride fine particles expressed by a general formula XBa (wherein element X is at least one or more kinds selected from a group consisting of La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, and Ca, satisfying 4.0?a?6.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: August 10, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mika Okada, Hideaki Fukuyama
  • Publication number: 20210238727
    Abstract: A composite tungsten oxide film includes a composition represented by a general formula MxWyOz (wherein, an element M is one or more elements selected from alkaline metal, alkaline earth metal, Fe, In, Tl, and Sn, an element W is tungsten, and an element O is oxygen) as main components, wherein 0.001?x/y?1, 2.2?z/y?3.0, organic components are not contained substantially, a sheet resistance is 105 ohms per square or more, a transmittance in a wavelength of 550 nm is 50% or more, a transmittance in a wavelength of 1400 nm is 30% or less, and also, an absorptance in a wavelength of 1400 nm is 35% or more, and an absorptance in a wavelength of 800 nm with respect to an absorptance in a wavelength of 1400 nm is 80% or less.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 5, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Keiichi SATO, Isao ANDO
  • Publication number: 20210238710
    Abstract: The purpose of the present invention is to provide a method for smelting oxide ore, the method being capable of efficiently producing high quality metal. The present invention pertains to a smelting method for producing a metal such as ferronickel as a reduced product by reducing a mixture of a carbonaceous reducing agent and an oxide ore such as nickel oxide ore, the method comprising a reduction step in which the mixture is charged into a reduction furnace and the oxide ore is reduced by heating the mixture with a burner to obtain molten metal and slag. In the reduction step, the molten metal and the slag generated by reducing the oxide ore are separated by gravity separation. In the reduction step, it is preferable to heat the mixture such that the temperatures of the metal and the slag obtained in the reduction furnace are each in the range of 1300-1700° C.
    Type: Application
    Filed: September 12, 2019
    Publication date: August 5, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Takashi Iseki
  • Publication number: 20210234163
    Abstract: A positive electrode active material for non-aqueous electrolyte secondary battery containing a lithium-nickel-manganese composite oxide formed of secondary particles with a plurality of aggregated primary particles, in which the positive electrode active material is represented by a general formula (1): LidN1?a?b?cMnaMbNbcO2+?, at least a part of niobium is solid-dissolved inside the primary particles, and an amount of lithium to be eluted into water when the positive electrode active material is immersed in water is 0.02% by mass or more and 0.10% by mass or less with respect to the entire positive electrode active material as determined by a neutralization titration method.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 29, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takuma Nakamura, Haruki Kaneda, Yuki Koshika
  • Publication number: 20210230742
    Abstract: Provided is a gas discharge roil, which includes: an inner roll, which has a rotary shaft; an outer roll, which is fitted and integrated with an outer peripheral surface of the inner roll; gas introduction grooves, which are formed on the outer peripheral surface of the inner roll over an entire circumference thereof at substantially uniform intervals along a circumferential direction of the inner roll so as to extend along a rotary shaft direction of the inner roll, and which are configured to define gas introduction channels between an inner peripheral surface of the outer roll and the gas introduction grooves; and a group of gas discharge holes formed on the outer roll so as to penetrate through to the gas introduction channels. A circumferential cutoff rate of a gas introduction channel cross-section is 36% or less, or a porosity within a gas introduction range is 20% or less.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 29, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Hideharu OKAMI