Patents Assigned to Sumitomo Metal Mining Co., Ltd.
  • Publication number: 20230256507
    Abstract: Provided are: an alloy powder in which nickel and cobalt can be easily dissolved in an acid and stably leached with an acid; a manufacturing method with which an alloy powder that enables stable acid leaching can be obtained at low cost; and a method for recovering a valuable metal using the manufacturing method. An alloy powder according to the present invention includes copper (Cu), nickel (Ni), and cobalt (Co) as constituents, has a 50% cumulative diameter (D50) of 30 µm to 85 µm in the volume particle size distribution, and has an oxygen content of 0.01 mass% to 1.00 mass%.
    Type: Application
    Filed: August 18, 2021
    Publication date: August 17, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Ryo Togashi
  • Publication number: 20230253559
    Abstract: Provided are a positive electrode active material with which a nonaqueous electrolyte secondary battery having a high energy density can be obtained, a nickel-manganese composite hydroxide suitable as a precursor of the positive electrode active material, and production methods capable of easily producing these in an industrial scale. Provided is a nickel-manganese composite hydroxide represented by General Formula (1): NixMnyMz(OH)2+? and containing a secondary particle formed of a plurality of flocculated primary particles. The nickel-manganese composite hydroxide has a half width of a diffraction peak of a (001) plane obtained by X-ray diffraction measurement of at least 0.10° and up to 0.40° and has a degree of sparsity/density represented by [(void area within secondary particle/cross section of secondary particle)×100](%) of at least 0.5% and up to 10%. Also provided is a production method of the nickel-manganese composite hydroxide.
    Type: Application
    Filed: April 13, 2023
    Publication date: August 10, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Haruki Kaneda, Yuki Koshika, Takaaki Ando
  • Publication number: 20230250508
    Abstract: Provided is a method that allows for efficient removal of an impurity metal, and further, the recovery of a valuable metal with high efficiency. The method for recovering a valuable metal (Cu, Ni, and Co) includes the steps of: preparing a charge comprising at least a valuable metal as a raw material; heating and melting the raw material to form an alloy and a slag; and separating the slag to recover the alloy containing the valuable metal, wherein the heating and melting of the raw material comprises charging the raw material into a furnace of an electric furnace equipped with an electrode therein, and further melting the raw material by means of Joule heat generated by applying an electric current to the electrode, or heat generation of an arc itself, and thereby separating the raw material into a molten alloy and a molten slag present over the alloy.
    Type: Application
    Filed: July 12, 2021
    Publication date: August 10, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kazunari Maeba, Yu Yamashita, Toshihiko Nagakura, Junichi Takahashi, Ryo Togashi
  • Patent number: 11718894
    Abstract: Provided is a method for separating copper from nickel and cobalt, which can efficiently and selectively separate copper from nickel and cobalt in a substance containing copper, nickel, and cobalt in a waste lithium ion battery, etc. In this method, a substance containing copper, nickel, and cobalt is sulfurated to obtain a sulfide, the obtained sulfide that contains copper, nickel, and cobalt is brought into contact with an acid solution to obtain a solid containing copper and a leachate containing nickel and cobalt. The sulfide preferably contains copper sulfide as a main component, and contains nickel metal and cobalt metal. In-addition, when bringing the sulfide into contact with the acid solution, the added amounts of the sulfide and the acid solution are preferably adjusted such that the oxidation-reduction potential of the obtained leachate is maintained at 150 mV or less where a silver/silver chloride electrode is a reference electrode.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: August 8, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroshi Takenouchi, Hiroshi Kobayashi, Hirofumi Shoji, Tatsuya Higaki
  • Publication number: 20230245807
    Abstract: A rare earth-iron-nitrogen-based magnetic powder according to this invention contains, as main constituent components, a rare-earth element (R), iron (Fe), and nitrogen (N). Moreover, this magnetic powder has an average particle size of 1.0-10.0 ?m, and contains 22.0-30.0 mass % of a rare-earth element (R) and 2.5-4.0 mass % of nitrogen (N). Further, this magnetic powder includes: a core part having any one crystal structure among a Th2Zn17 type, a Th2Ni17 type, and a TbCu7 type; and a shell layer provided on the surface of the core part and having a thickness of 1-30 nm. The shell layer contains a rare-earth element (R) and iron (Fe) so that the R/Fe atomic ratio is 0.3-5.0, and further contains 0-10 at % (exclusive of 0) of nitrogen (N). Furthermore, this magnetic powder contains compound particles composed of a rare-earth element (R) and phosphorus (P).
    Type: Application
    Filed: March 31, 2021
    Publication date: August 3, 2023
    Applicants: Tohoku University, SUMITOMO METAL MINING CO., LTD.
    Inventors: Satoshi Sugimoto, Masashi Matsuura, Takashi Ishikawa, Yukinobu Yoneyama
  • Patent number: 11699807
    Abstract: The positive electrode material for lithium ion secondary batteries includes a mixture including a positive electrode active material in which a length of a longest side of a primary particle is 1 nm or more and 1000 nm or less and a NASICON-type compound in which a length of a longest side of a primary particle is 1 nm or more and 1000 nm or less.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: July 11, 2023
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Satoru Oshitari, Kouji Oono, Tsutomu Nozoe
  • Patent number: 11697862
    Abstract: A mineral processing method capable of efficiently separating a copper mineral from a molybdenum mineral is provided. The mineral processing method includes: a conditioning step of adding sulfite as a surface treatment agent to a mineral slurry containing a copper mineral and a molybdenum mineral; and a flotation step of performing flotation using the mineral slurry after the conditioning step. The hydrophilicity of the copper mineral can be selectively enhanced by sulfite, so as to be able to produce a difference in hydrophilicity between the copper mineral and the molybdenum mineral. Therefore, the molybdenum mineral can be selectively caused to float, and the copper mineral and the molybdenum mineral can be efficiently separated from each other.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: July 11, 2023
    Assignees: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, SUMITOMO METAL MINING CO., LTD.
    Inventors: Tsuyoshi Hirajima, Hajime Miki, Gde Pandhe Wisnu Suyantara, Yuji Imaizumi, Yuji Aoki, Eri Takida
  • Publication number: 20230212710
    Abstract: The present invention provides a method which is capable of more strictly controlling the oxygen partial pressure required during the melting of a starting material, thereby being capable of recovering a valuable metal more efficiently. A method for recovering valuable metals (Cu, Ni, Co), said method comprising the following steps: a step for preparing, as a starting material, a charge that contains at least phosphorus (P), manganese (Mn) and valuable metals; a step for heating and melting the starting material into a melt, and subsequently forming the melt into a molten material that contains an alloy and slag; and a step for recovering the alloy that contains valuable metals by separating the slag from the molten material. With respect to this method for recovering valuable metals, the oxygen partial pressure in the melt is directly measured with use of an oxygen analyzer when the starting material is heated and melted.
    Type: Application
    Filed: June 21, 2021
    Publication date: July 6, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Yu Yamashita
  • Publication number: 20230212713
    Abstract: The present invention provides a method which is capable of more strictly controlling the oxygen partial pressure required during the melting of a starting material, thereby being capable of recovering a valuable metal more efficiently. A method for recovering valuable metals (Cu, Ni, Co), said method comprising the following steps: a step for preparing, as a starting material, a charge that contains at least phosphorus (P), iron (Fe) and valuable metals; a step for heating and melting the starting material into a melt, and subsequently forming the melt into a molten material that contains an alloy and slag; and a step for recovering the alloy that contains valuable metals by separating the slag from the molten material. With respect to this method for recovering valuable metals, the oxygen partial pressure in the melt is directly measured with use of an oxygen analyzer when the starting material is heated and melted.
    Type: Application
    Filed: June 21, 2021
    Publication date: July 6, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Yu Yamashita
  • Patent number: 11695116
    Abstract: The cathode active material is capable of reducing cathode resistance of a secondary battery by enhancing electron conductivity thereof without reducing discharge capacity of the secondary battery. The method for manufacturing a cathode active material includes: mixing transition metal-containing composite compound particles containing lanthanum with a lithium compound to obtain a lithium mixture; calcinating the lithium mixture at a temperature equal to or lower than the melting point of the lithium compound; and then subjecting the lithium mixture to main firing at a firing temperature within a range of 725° C. to 1000° C. Lithium carbonate is preferably used as the lithium compound, and in this case, the calcination temperature is within a range of 600° C. to 723° C. It is preferable to obtain the transition metal-containing composite compound particles containing lanthanum by a coprecipitation method and to uniformly disperse a lanthanum element in the particles.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: July 4, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Satoshi Kanada, Tetsutaro Hayashi
  • Patent number: 11685839
    Abstract: A near-infrared curable ink composition on a predetermined substrate that has excellent adhesion to the substrate when irradiated with near-infrared rays and cured, a near-infrared curable film obtained from the near-infrared curable ink composition, and stereolithography using the near-infrared curable ink composition, and contains composite tungsten oxide fine particles as near-infrared absorbing fine particles and uncured thermosetting resin, wherein the composite tungsten oxide fine particles have a XRD peak top intensity ratio value of 0.13 or more based on a XRD peak intensity ratio value of 1 on plane (220) of a silicon powder standard sample (640c produced by NIST).
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: June 27, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mika Okada, Takeshi Chonan, Hirofumi Tsunematsu
  • Publication number: 20230187628
    Abstract: A positive electrode active material for a lithium ion secondary battery including a coating layer, wherein, a substance quantity ratio is represented by Li:Ni:Co:M=t:1?x?y:x:y (wherein, M is at least one element selected from Mg and else, 0.95?t?1.20, 0<x?0.22, and 0?y?0.15), the coating layer includes a lithium zirconium compound, and a ratio of a sum of substance quantities of Ni, Co, Zr and a substance quantity of Zr existing on a surface of the positive electrode active material is 0.80 or more and 0.97 or less.
    Type: Application
    Filed: June 9, 2021
    Publication date: June 15, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Saihei FUJIMOTO
  • Publication number: 20230187625
    Abstract: The method for producing a positive electrode active material for a lithium ion secondary battery includes preparing a mixture containing at least a nickel-manganese composite compound, a lithium compound, and optionally one or both of a titanium compound and a niobium compound. The method also includes firing the mixture from 750° C. to 1000° C. so as to obtain the lithium-nickel-manganese composite oxide, in which the nickel-manganese composite compound contains at least nickel, manganese, and an element M, an amount of substance ratio (z) of titanium and an amount of substance ratio (w) of niobium to a total amount of substance of nickel, manganese, the element M, titanium, and niobium in the mixture satisfy 0.005?z?0.05, 0.001<w?0.03, (z+w)?0.06, and z>w, and at least a part of the niobium is segregated to a grain boundary between primary particles.
    Type: Application
    Filed: June 30, 2020
    Publication date: June 15, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuki Koshika, Haruki Kaneda, Yukihiro Goda
  • Publication number: 20230187624
    Abstract: A positive electrode active material that can achieve high thermal stability at low cost is provided. Provided is a positive electrode active material for a lithium ion secondary battery, the positive electrode active material containing a lithium-nickel-manganese composite oxide, in which metal elements constituting the lithium-nickel-manganese composite oxide include lithium (Li), nickel (Ni), manganese (Mn), cobalt (Co), titanium (Ti), niobium (Nb), and optionally zirconium (Zr), an amount of substance ratio of the elements is represented as Li:Ni:Mn:Co:Zr:Ti:Nb=a:b:c:d:e:f:g (provided that, 0.97?a?1.10, 0.80?b?0.88, 0.04?c?0.12, 0.04?d?0.10, 0?e?0.004, 0.003<f?0.030, 0.001<g?0.006, and b+c+d+e+f+g=1), in the amount of substance ratio, (f÷g)?0.030 and f>g are satisfied, and an amount of lithium to be eluted in water when the positive electrode active material is immersed in water is 0.20% by mass or less with respect to the entire positive electrode active material.
    Type: Application
    Filed: June 30, 2020
    Publication date: June 15, 2023
    Applicants: SUMITOMO METAL MINING CO., LTD., PANASONIC CORPORATION
    Inventors: Yuki Koshika, Haruki Kaneda, Sho Tsuruta, Takashi Ko, Fumiharu Niina
  • Publication number: 20230183091
    Abstract: Provided is a method for separating impurities and cobalt without using an electrolysis process from a cobalt chloride solution containing impurities and producing a high purity cobalt sulfate.
    Type: Application
    Filed: January 6, 2022
    Publication date: June 15, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroto WATANABE, Hideki OHARA, Keiji KUDOU, Takashi KANEKO, Tatsuya HIGAKI, Natsuki KONDOU, Shin-ichi HEGURI
  • Publication number: 20230174385
    Abstract: Provided is a method for producing a lithium-containing solution that allows increasing a content rate of lithium in a solution after an eluting step, and suppressing an amount of an eluted solution used in a process after the eluting step, thus suppressing production cost of lithium. A method for producing a lithium-containing solution includes an adsorption step of bringing a lithium adsorbent obtained from lithium manganese oxide in contact with a low lithium-containing solution to obtain post-adsorption lithium manganese oxide, an eluting step of bringing the post-adsorption lithium manganese oxide in contact with an acid-containing solution to obtain an eluted solution, and a manganese oxidation step of oxidating manganese to obtain a lithium-containing solution with a suppressed manganese concentration. The adsorption step, the eluting step, and the manganese oxidation step are performed in this order, and the acid-containing solution includes the eluted solution with acid added.
    Type: Application
    Filed: March 30, 2022
    Publication date: June 8, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Osamu IKEDA, Masatoshi TAKANO, Satoshi ASANO, Shin-ichi HEGURI, Shin-ya MATSUMOTO, Yohei KUDO, Yusuke SENBA, Kyohei MAEDA
  • Patent number: 11670765
    Abstract: Provided are a positive electrode active material that can provide a nonaqueous electrolyte secondary battery having high energy density and excellent output characteristics, a nickel-manganese composite hydroxide as a precursor thereof, and methods for producing these. A nickel-manganese composite hydroxide is represented by General Formula (1): NixMnyMz(OH)2+? and contains a secondary particle formed of a plurality of flocculated primary particles. The nickel-manganese composite hydroxide has a half width of a diffraction peak of a (001) plane of at least 0.35° and up to 0.50° and has a degree of sparsity/density represented by [(a void area within the secondary particle/a cross section of the secondary particle)×100](%) within a range of greater than 10% and up to 25%.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: June 6, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Haruki Kaneda, Yuki Koshika, Takaaki Ando
  • Publication number: 20230167011
    Abstract: The thick film resistor paste for a resistor has no abnormalities of cracks in appearance and sufficient surge resistance, especially for low resistance, while using lead borosilicate glass. The thick film resistor paste comprises a silver powder or a palladium powder, or a mixture of both of the silver powder and the palladium powder, a ruthenium-oxide-containing glass powder and an organic vehicle, the ruthenium-oxide-containing glass powder comprises 10 to 60 mass % of ruthenium oxide, a glass composition of the ruthenium-oxide-containing glass powder comprises 3 to 60 mass % of silicon oxide, 30 to 90 mass % of lead oxide, 5 to 50 mass % of boron oxide relative to 100 mass % of glass components, and, a combined amount of silicon oxide, lead oxide and boron oxide by mass % is 50 mass % or more relative to 100 mass % of the glass components.
    Type: Application
    Filed: April 30, 2021
    Publication date: June 1, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Masaki Ando, Takahito Nagano
  • Publication number: 20230167526
    Abstract: An alloy treatment method is provided, in which a solution containing nickel and/or cobalt is obtained from an alloy containing nickel and/or cobalt and also containing copper and zinc, the method comprising: a leaching step for subjecting the alloy to a leaching treatment with an acid under the condition where a sulfating agent is present to produce a leachate; a reduction step for subjecting the leachate to a reduction treatment using a reducing agent to produce a reduced solution; an oxidation/neutralization step for adding an oxidizing agent and a neutralizing agent to the reduced solution to produce a neutralized solution containing nickel and/or cobalt and also containing zinc; and a solvent extraction step for subjecting the neutralized solution to a solvent extraction procedure using an acidic phosphorus compound-based extractant to produce a solution containing nickel and/or cobalt.
    Type: Application
    Filed: March 11, 2021
    Publication date: June 1, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Keiji Kudou, Satoshi Asano, Shin-ichi Heguri, Hiroshi Takenouchi, Hirofumi Shouji, Itsumi Matsuoka, Shota Sanjo, Takumi Matsugi
  • Publication number: 20230170114
    Abstract: To provide a thick film resistor paste for a resistor having a smaller resistance change rate and excellent surge resistance, a thick film resistor using the thick film resistor paste, and an electronic component provided with the thick film resistor. A thick film resistor paste comprises a lead-ruthenate-containing glass powder and an organic vehicle, the lead-ruthenate-containing glass powder comprises 10 to 70 mass % of lead ruthenate, a glass composition of the lead-ruthenate-containing glass powder comprises 3 to 30 mass % of silicon oxide, 30 to 90 mass % of lead oxide. 5 to 50 mass % of boron oxide relative to 100 mass % of glass components, and, a combined amount of silicon oxide, lead oxide and boron oxide by mass % is 50 mass % or more relative to 100 mass % of the glass components.
    Type: Application
    Filed: April 30, 2021
    Publication date: June 1, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Masaki Ando