Patents Assigned to Sun Drilling Products Corporation
  • Patent number: 9034799
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of thermoset polymer particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: May 19, 2015
    Assignee: Sun Drilling Products Corporation
    Inventor: Jozef Bicerano
  • Patent number: 9006314
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of thermoset polymer particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: April 14, 2015
    Assignee: Sun Drilling Products Corporation
    Inventor: Jozef Bicerano
  • Publication number: 20150011439
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of thermoset polymer particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Applicant: SUN DRILLING PRODUCTS CORPORATION
    Inventor: Jozef BICERANO
  • Publication number: 20130225729
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of thermoset polymer particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Application
    Filed: January 28, 2013
    Publication date: August 29, 2013
    Applicant: SUN DRILLING PRODUCTS CORPORATION
    Inventor: Sun Drilling Products Corporation
  • Patent number: 8492316
    Abstract: A method for fracture stimulation of a subterranean formation includes providing a thermoset polymer nanocomposite particle precursor composition comprising a polymer precursor mixture, dispersed within a liquid medium, containing at least one of an initiator; at least one of a monomer, an oligomer or combinations thereof, said monomer and oligomer having three or more reactive functionalities capable of creating crosslinks between polymer chains; at least one of an impact modifier; and nanofiller particles substantially dispersed within the liquid medium; subjecting the nanocomposite particle precursor composition to suspension polymerizing conditions; subjecting the resulting nanocomposite particles to heat treatment; forming a slurry comprising a fluid and a proppant that includes the heat-treated nanocomposite particles; injecting the slurry into a wellbore; and emplacing the proppant within a fracture network in the formation.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: July 23, 2013
    Assignee: Sun Drilling Products Corporation
    Inventor: Jozef Bicerano
  • Patent number: 8466093
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of thermoset polymer particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: June 18, 2013
    Assignee: Sun Drilling Products Corporation
    Inventors: Jozef Bicerano, Robert L. Albright
  • Patent number: 8461087
    Abstract: A method for fracture stimulation of a subterranean formation includes providing a thermoset polymer nanocomposite particle precursor composition comprising a polymer precursor mixture, dispersed within a liquid medium, containing at least one of an initiator; at least one of a monomer, an oligomer or combinations thereof, said monomer and oligomer having three or more reactive functionalities capable of creating crosslinks between polymer chains; at least one of an impact modifier; and nanofiller particles substantially dispersed within the liquid medium; subjecting the nanocomposite particle precursor composition to suspension polymerizing conditions; subjecting the resulting nanocomposite particles to heat treatment; forming a slurry comprising a fluid and a proppant that includes the heat-treated nanocomposite particles; injecting the slurry into a wellbore; and emplacing the proppant within a fracture network in the formation.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: June 11, 2013
    Assignee: Sun Drilling Products Corporation
    Inventor: Jozef Bicerano
  • Patent number: 8455403
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of such particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: June 4, 2013
    Assignee: Sun Drilling Products Corporation
    Inventors: Jozef Bicerano, Robert L. Albright
  • Publication number: 20130118741
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of thermoset polymer particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Application
    Filed: December 17, 2012
    Publication date: May 16, 2013
    Applicant: SUN DRILLING PRODUCTS CORPORATION
    Inventor: Sun Drilling Products Corporation
  • Publication number: 20130096037
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of thermoset polymer particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Application
    Filed: September 27, 2012
    Publication date: April 18, 2013
    Applicant: SUN DRILLING PRODUCTS CORPORATION
    Inventor: Sun Drilling Products Corporation
  • Publication number: 20130045901
    Abstract: A method for fracture stimulation of a subterranean formation includes providing a thermoset polymer nanocomposite particle precursor composition comprising a polymer precursor mixture, dispersed within a liquid medium, containing at least one of an initiator; at least one of a monomer, an oligomer or combinations thereof, said monomer and oligomer having three or more reactive functionalities capable of creating crosslinks between polymer chains; at least one of an impact modifier; and nanofiller particles substantially dispersed within the liquid medium; subjecting the nanocomposite particle precursor composition to suspension polymerizing conditions; subjecting the resulting nanocomposite particles to heat treatment; forming a slurry comprising a fluid and a proppant that includes the heat-treated nanocomposite particles; injecting the slurry into a wellbore; and emplacing the proppant within a fracture network in the formation.
    Type: Application
    Filed: September 28, 2012
    Publication date: February 21, 2013
    Applicant: SUN DRILLING PRODUCTS CORPORATION
    Inventor: SUN DRILLING PRODUCTS CORPORATION
  • Patent number: 8361934
    Abstract: A method for fracture stimulation of a subterranean formation having a wellbore. The method comprise a series of steps. A slurry is injected into the wellbore at sufficiently high rates and pressures such that the formation fails and fractures to accept the slurry. The slurry comprises a fluid and a proppant, wherein said proppant comprises a styrene-ethylvinylbenzene-divinylbenzene terpolymer composition having a substantially cured polymer network, wherein said composition lacks rigid fillers or nanofillers. The proppant is emplaced within the fracture network in a packed mass or a partial monolayer of the proppant within the fracture, wherein the packed mass or partial monolayer props open the fracture; thereby allowing produced gases, fluids, or mixtures thereof, to flow towards the wellbore.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: January 29, 2013
    Assignee: Sun Drilling Products Corporation
    Inventor: Jozef Bicerano
  • Publication number: 20120325473
    Abstract: In one aspect, this invention provides a method for the in-situ production of natural gas, light crude oil, or sequences or mixtures thereof, comprising the steps of: (a) suspending a catalytic polymer bead in a fracturing medium, wherein said catalytic polymer bead is nearly neutrally buoyant in said fracturing medium; (b) introducing said suspension into a formation at sufficiently high rates and pressures that the formation fails and fractures to accept said suspension; and (c) collecting the natural gas, light crude oil, or sequences or mixtures thereof, generated by the subterranean formation. In another aspect, this invention provides compositions of matter for said catalytic polymer beads. In yet another aspect, this invention provides processing methods for producing said catalytic polymer beads.
    Type: Application
    Filed: March 9, 2011
    Publication date: December 27, 2012
    Applicant: SUN DRILLING PRODUCTS CORPORATION
    Inventor: Jozef Bicerano
  • Patent number: 8278373
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of such particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: October 2, 2012
    Assignee: Sun Drilling Products Corporation
    Inventors: Jozef Bicerano, Robert L. Albright
  • Patent number: 8258083
    Abstract: A method for fracture stimulation of a subterranean formation includes providing a thermoset polymer nanocomposite particle precursor composition comprising a polymer precursor mixture, dispersed within a liquid medium, containing at least one of an initiator; at least one of a monomer, an oligomer or combinations thereof, said monomer and oligomer having three or more reactive functionalities capable of creating crosslinks between polymer chains; at least one of an impact modifier; and nanofiller particles substantially dispersed within the liquid medium; subjecting the nanocomposite particle precursor composition to suspension polymerizing conditions; subjecting the resulting nanocomposite particles to heat treatment; forming a slurry comprising a fluid and a proppant that includes the heat-treated nanocomposite particles; injecting the slurry into a wellbore; and emplacing the proppant within a fracture network in the formation.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: September 4, 2012
    Assignee: Sun Drilling Products Corporation
    Inventor: Jozef Bicerano
  • Publication number: 20120199347
    Abstract: A method for fracture stimulation of a subterranean formation having a wellbore. The method comprise a series of steps. A slurry is injected into the wellbore at sufficiently high rates and pressures such that the formation fails and fractures to accept the slurry. The slurry comprises a fluid and a proppant, wherein said proppant comprises a styrene-ethylvinylbenzene-divinylbenzene terpolymer composition having a substantially cured polymer network, wherein said composition lacks rigid fillers or nanofillers. The proppant is emplaced within the fracture network in a packed mass or a partial monolayer of the proppant within the fracture, wherein the packed mass or partial monolayer props open the fracture; thereby allowing produced gases, fluids, or mixtures thereof, to flow towards the wellbore.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 9, 2012
    Applicant: SUN DRILLING PRODUCTS CORPORATION
    Inventor: Jozef Bicerano
  • Publication number: 20120202921
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of such particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Application
    Filed: January 19, 2012
    Publication date: August 9, 2012
    Applicant: SUN DRILLING PRODUCTS CORPORATION
    Inventors: Jozef BICERANO, Robert L. ALBRIGHT
  • Publication number: 20120202719
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of such particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Application
    Filed: December 29, 2011
    Publication date: August 9, 2012
    Applicant: SUN DRILLING PRODUCTS CORPORATION
    Inventors: Jozef BICERANO, Robert L. ALBRIGHT
  • Patent number: 8088718
    Abstract: Thermoset polymer particles are used in many applications requiring lightweight particles possessing high stiffness, strength, temperature resistance, and/or resistance to aggressive environments. The present invention relates to the use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of such particles. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. In general, its main benefits are the enhancement of the maximum possible use temperature and the environmental resistance. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. In general, its main benefits are increased stiffness and strength.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: January 3, 2012
    Assignee: Sun Drilling Products Corporation
    Inventors: Jozef Bicerano, Robert L. Albright
  • Publication number: 20110311719
    Abstract: A method for “tagging” proppants so that they can be tracked and monitored in a downhole environment, based on the use of composite proppant compositions comprising a particulate substrate coated by a material whose electromagnetic properties change at a detectable level under a mechanical stress such as the closure stress of a fracture. In another aspect, the invention relates to composite proppant compositions comprising coatings whose electromagnetic properties change under a mechanical stress such as the closure stress of a fracture. The substantially spherical composite proppants may comprise a thermoset nanocomposite particulate substrate where the matrix material comprises a terpolymer of styrene, ethylvinylbenzene and divinylbenzene, and carbon black particles possessing a length that is less than 0.
    Type: Application
    Filed: August 25, 2011
    Publication date: December 22, 2011
    Applicant: SUN DRILLING PRODUCTS CORPORATION
    Inventor: Jozef BICERANO