Patents Assigned to Sunnybrook Health Sciences Centre
  • Patent number: 9142018
    Abstract: A method for determining the three-dimensional location of an object in real-time from a two-dimensional medical image obtained with a medical imaging system is provided. For example, the three-dimensional location of an interventional medical device or a marker positioned on such a device may be determined from a two-dimensional x-ray image obtained with an interventional x-ray imaging system. Template images corresponding to the object under different imaging geometries and orientations are produced and are compared to images acquired with the medical imaging system. Similarity measures, such as normalized cross correlation and normalized similarity integral, are used to determine the similarity between a selected template image and the medical images in different stages of refining the position information for the object.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: September 22, 2015
    Assignee: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventors: Normand Robert, Eugene Crystal
  • Patent number: 9101752
    Abstract: A focused ultrasound system includes an ultrasound transducer configured to emit focused ultrasound energy toward a subject and a positioning system configured to position the ultrasound transducer to localize the focused ultrasound energy within a target location. The positioning system includes a drive apparatus to translate the ultrasound transducer along at least one axis of motion and a motor controller to control the drive apparatus. The focused ultrasound system also includes a control system connected to the motor controller that is programmed to receive imaging/location data from an imaging system, determine positional coordinates of the target location based on the imaging/location data, and register the positional coordinates of the target location with the positioning system. The positional coordinates are sent to the motor controller via an input signal to cause the motor controller to control the drive apparatus so as to translate the ultrasound transducer.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: August 11, 2015
    Assignee: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventors: Rajiv Chopra, Kullervo Hynynen, Anthony Chau, Adam Christian Waspe
  • Publication number: 20150217500
    Abstract: Methods and apparatus are provided for forming a patient-specific surgical implant based on mold system. The apparatus comprises a forming tool and a mold that may be generated using imaging and processing techniques and rapid prototyping methods. The mold apparatus includes at least two non-adjacent surface features for securing an implant forming material (such as a titanium mesh) during the forming process, enabling the implant forming material to be stretched beyond its elastic and thus permanently deformed with the correct patient-specific curvature. The implant may include one or more anatomic surface features for guidance and registration when transferring the implant to a patient.
    Type: Application
    Filed: March 4, 2015
    Publication date: August 6, 2015
    Applicant: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventors: Oleh ANTONYSHYN, Glenn EDWARDS, James MAINPRIZE
  • Patent number: 9050450
    Abstract: An ultrasound therapy transducer head comprises an ultrasound source emitting ultrasonic radiation, the ultrasound source comprising a plurality of transducer elements, integrated driving electronics coupled to the transducer elements, the electronics generating at least one output ultrasound waveform and driving at least some of the transducer elements independently based on the at least one output ultrasound waveform and temperature control structure providing cooling for the electronics.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: June 9, 2015
    Assignee: Sunnybrook Health Sciences Centre
    Inventors: Kullervo H. Hynynen, Junho Song
  • Patent number: 9039626
    Abstract: The present invention provides minimally invasive imaging probe/medical device having a frictional element integrated therewith for reducing non-uniform rotational distortion near the distal end of a medical device, such as an imaging probe which undergoes rotational movement during scanning of surrounding tissue in bodily lumens and cavities.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: May 26, 2015
    Assignee: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventor: Brian Kent Courtney
  • Patent number: 8989838
    Abstract: The present invention provides a method and apparatus for delivering and controlling thermal therapy to a volume of diseased tissue. Specifically, the invention includes using thermal imaging and other inputs to determine an acoustic (ultrasonic) treatment regime employing interstitial ultrasound applicators to deliver a required therapeutic temperature or thermal dose to the affected region in a body or organ. Various aspects of the treatment that can be controlled include individual transducer element operating power and frequency, as well as the rate of cooling and rotation of the entire applicator.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: March 24, 2015
    Assignee: Sunnybrook Health Sciences Centre
    Inventors: Rajiv Chopra, Michael Bronskill, Mathieu Burtnyk
  • Patent number: 8974535
    Abstract: Methods and apparatus are provided for forming a patient-specific surgical implant based on mold system. The apparatus comprises a forming tool and a mold that may be generated using imaging and processing techniques and rapid prototyping methods. The mold apparatus includes at least two non-adjacent surface features for securing an implant forming material (such as a titanium mesh) during the forming process, enabling the implant forming material to be stretched beyond its elastic and thus permanently deformed with the correct patient-specific curvature. The implant may include one or more anatomic surface features for guidance and registration when transferring the implant to a patient.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 10, 2015
    Assignee: Sunnybrook Health Sciences Centre
    Inventors: Oleh Antonyshyn, Glenn Edwards, James Mainprize
  • Patent number: 8957022
    Abstract: The present invention provides a multimeric form of a Tie 2 binding peptide monomer, wherein the multimeric form has Tie 2 agonist activity. The multimeric form, preferably a tetramer, stimulates angiogenesis and promotes wound healing. The present invention also features pharmaceutical compositions comprising the multimeric Tie 2 agonists, including those suitable for topical or systemic administration. Methods of using the multimeric Tie 2 agonists of the invention for stimulating angiogenesis and for promoting healing of wounds, such as diabetic ulcers or skin grafts, are also provided.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 17, 2015
    Assignee: Sunnybrook Health Sciences Centre
    Inventors: Paul Van Slyke, Daniel Dumont
  • Patent number: 8909322
    Abstract: A catheter for magnetic resonance (MR) guided procedures comprising: a catheter body having a lumen for accommodating an intravascular device; a magnetic coupling component in the catheter body, the magnetic coupling component being designed to magnetically couple with a conductive length on the intravascular device, the magnetic coupling resulting in a signal; the catheter having a connection to deliver the signal to a processor.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: December 9, 2014
    Assignee: Sunnybrook Health Sciences Centre
    Inventors: Kevan Anderson, Graham Wright
  • Publication number: 20140323860
    Abstract: The present invention provides an imaging probe for imaging mammalian tissues and structures using high resolution imaging, including high frequency ultrasound and optical coherence tomography. The imaging probes structures using high resolution imaging use combined high frequency ultrasound (IVUS) and optical imaging methods such as optical coherence tomography (OCT) and to accurate co-registering of images obtained from ultrasound image signals and optical image signals during scanning a region of interest.
    Type: Application
    Filed: May 20, 2014
    Publication date: October 30, 2014
    Applicant: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventors: Brian COURTNEY, Nigel Robert MUNCE, Amandeep Singh THIND, Victor Xiao Dong YANG, Francis Stuart FOSTER
  • Publication number: 20140323877
    Abstract: The present invention provides minimally invasive imaging probe having an optical encoder integrated therewith for accurately measuring or estimating the rotational velocity near the distal end of the medical device, such as an imaging probe which undergoes rotational movement during scanning of surrounding tissue in bodily lumens and cavities.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 30, 2014
    Applicant: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventors: Brian COURTNEY, Nigel Robert MUNCE, Amandeep Singh THIND, Victor Xiao Dong YANG, Francis Stuart FOSTER
  • Publication number: 20140248248
    Abstract: Human progenitor T cells that are able to successfully engraft a murine thymus and differentiate into mature human T and NK cells are described. The human progenitor T cells have the phenotype CD34+CD7+CD1a?CD5? or CD34+CD7+CD1a?CD5+ and are derived from human hematopoietic stem cells, embryonic stem cells and induced pluripotent stem cells by coculture with cells expressing a Notch receptor ligand (OP9-DL1 or OP9-DL4). Such cells are useful in a variety of applications including immune reconstitution, the treatment of immunodeficiencies and as carriers for genes used in gene therapy.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 4, 2014
    Applicant: Sunnybrook Health Sciences Centre
    Inventors: JUAN CARLOS ZUNIGA-PFLUCKER, GENEVE AWONG, ROSS LA MOTTE-MOHS
  • Patent number: 8801701
    Abstract: The invention provides a method and apparatus for monitoring a thermal effect of a conformal thermal treatment to diseased tissue in a target volume. The method includes acquiring a reference image of the volume containing the diseased tissue at a first position of the device, determining a baseline temperature distribution of the reference image, acquiring an image of the volume containing the diseased tissue while delivering a treatment to the volume, performing a phase subtraction between the image and the reference image to determine a change in phase between the image and the reference image and determining a current spatial temperature distribution in the volume containing the diseased tissue.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: August 12, 2014
    Assignee: Sunnybrook Health Sciences Centre
    Inventors: Rajiv Chopra, Michael Bronskill, Kee Tang
  • Patent number: 8784321
    Abstract: The present invention provides an imaging probe for imaging mammalian tissues and structures using high resolution imaging, including high frequency ultrasound and optical coherence tomography. The imaging probes structures using high resolution imaging use combined high frequency ultrasound (IVUS) and optical imaging methods such as optical coherence tomography (OCT) and to accurate co-registering of images obtained from ultrasound image signals and optical image, signals during scanning a region of interest.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: July 22, 2014
    Assignee: Sunnybrook Health Sciences Centre
    Inventors: Brian Courtney, Nigel Robert Munce, Amandeep Singh Thind, Victor Xiao Dong Yang, Francis Stuart Foster
  • Patent number: 8772028
    Abstract: Human progenitor T cells that are able to successfully engraft a murine thymus and differentiate into mature human T and NK cells are described The human progenitor T cells have the phenotype CD34+CD7+CD1a?CD5? or CD34+CD7+CD1a?CD5+ and are derived from human hematopoietic stem cells, embryonic stem cells and induced pluripotent stem cells b\ coculture with cells expressing a Notch receptor ligand (OP9-DL1 or OP9-DL4) Such cells are useful in a variety of applications including immune reconstitution, the treatment of immunodeficiencies and as carriers for genes used in gene therapy.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: July 8, 2014
    Assignee: Sunnybrook Health Sciences Centre
    Inventors: Juan Carlos Zuniga-Pflucker, Geneve Awong, Ross La Motte-Mohs
  • Publication number: 20140163433
    Abstract: An ultrasound therapy transducer head comprises an ultrasound source emitting ultrasonic radiation, the ultrasound source comprising a plurality of transducer elements, integrated driving electronics coupled to the transducer elements, the electronics generating at least one output ultrasound waveform and driving at least some of the transducer elements independently based on the at least one output ultrasound waveform and temperature control structure providing cooling for the electronics.
    Type: Application
    Filed: May 20, 2013
    Publication date: June 12, 2014
    Applicant: Sunnybrook Health Sciences Centre
    Inventors: Kullervo H. Hynynen, Junho Song
  • Patent number: 8712506
    Abstract: The present invention provides minimally invasive imaging probe having an optical encoder integrated therewith for accurately measuring or estimating the rotational velocity near the distal end of the medical device, such as an imaging probe which undergoes rotational movement during scanning of surrounding tissue in bodily lumens and cavities.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: April 29, 2014
    Assignee: Sunnybrook Health Sciences Centre
    Inventors: Brian Courtney, Nigel Robert Munce, Amandeep Singh Thind, Victor Xiao Dong Yang, Francis Stuart Foster
  • Patent number: 8460195
    Abstract: The present invention provides scanning mechanisms for imaging probes using for imaging mammalian tissues and structures using high resolution imaging, including high frequency ultrasound and/or optical coherence tomography. The imaging probes include adjustable rotational drive mechanism for imparting rotational motion to an imaging assembly containing either optical or ultrasound transducers which emit energy into the surrounding area. The imaging assembly includes a scanning mechanism including a movable member configured to deliver the energy beam along a path out of said elongate hollow shaft at a variable angle with respect to said longitudinal axis to give forward and side viewing capability of the imaging assembly. The movable member is mounted in such a way that the variable angle is a function of the angular velocity of the imaging assembly.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: June 11, 2013
    Assignee: Sunnybrook Health Sciences Centre
    Inventors: Brian Courtney, Nigel Robert Munce, Amandeep Singh Thind, Victor Xiao Dong Yang, Francis Stuart Foster, Alan Soong, Brian Heng Li
  • Publication number: 20130115226
    Abstract: The present disclosure provides methods and uses of Tie2 binding and/or activating agents. In particular, the present disclosure provides methods and uses for inhibiting the expansion of colony forming unit-granulocytes, reducing eosinophils and/or basophils, for treating allergic disease or response or eosinophil/basophil associated condition and for reducing inflammatory cytokine and/or chemokine levels.
    Type: Application
    Filed: April 28, 2011
    Publication date: May 9, 2013
    Applicant: Sunnybrook Health Sciences Centre
    Inventors: Paul Van Slyke, Daniel Dumont
  • Publication number: 20130088227
    Abstract: A method and system for determination of oxygen saturation in blood flowing in a vessel using magnetic resonance (MR). An MR image sequence is acquired with different echo time (TE) encoding, and different Fourier velocity encoding (FVE). A Fourier transformation is applied along the velocity dimension to determine a velocity distribution of tissue signals in each voxel of the image sequence. Tissue signals indicative of moving tissues are separated from tissue signals indicative of static tissue, based on the velocity distribution. Oxygen saturation in blood may then be determined using only the tissue signals indicative of flowing blood.
    Type: Application
    Filed: April 15, 2011
    Publication date: April 11, 2013
    Applicants: SUNNYBROOK HEALTH SCIENCES CENTRE, THE HOSPITAL FOR SICK CHILDREN
    Inventors: Christopher Wernik, Venkat Swaminathan, Graham Wright, Christopher MacGowan