Abstract: A grafting reagent and related method of using the reagent to form a polymeric layer on a support surface, and particularly a porous support surface, in a manner that provides and/or preserves desired properties (such as porosity) of the surface. The reagent and method can be used to provide a thin, conformable, uniform, uncrosslinked coating having desired properties onto the surface of a preformed, and particularly a porous, polymeric substrate.
Type:
Grant
Filed:
August 29, 2007
Date of Patent:
June 15, 2010
Assignee:
Surmodics, Inc.
Inventors:
Ralph A. Chappa, Sean M. Stucke, Richard A. Amos, Terrence P. Everson, Stephen J. Chudzik, Dale G. Swan, Peter H. Duquette
Abstract: The present invention relates to methods, devices, and coatings, wherein active agent release is determined by deposition rate of a coating or material. In an embodiment, the invention includes a method for coating a medical device, including identifying active agent elution rates for a coating composition applied to substrates at a plurality of coating deposition rates, selecting one of the coating deposition rates, and applying the coating composition to the medical device at the selected deposition rate. In an embodiment, the invention includes a combination including a medical device and a composition for coating the surface of a medical device with an active agent in a manner that permits the coated surface to release the active agent over time when implanted in vivo.
Abstract: Method and reagent composition for covalent attachment of target molecules, such as nucleic acids, onto the surface of a substrate. The reagent composition includes groups capable of covalently binding to the target molecule. Optionally, the composition can contain photoreactive groups for use in attaching the reagent composition to the surface. The reagent composition can be used to provide activated slides for use in preparing microarrays of nucleic acids.
Type:
Grant
Filed:
July 9, 2002
Date of Patent:
April 6, 2010
Assignee:
SurModics, Inc.
Inventors:
Ralph A. Chappa, Sheau-Ping Hu, Dale G. Swan, Melvin J. Swanson, Patrick E. Guire
Abstract: The invention provides a durable, lubricious coating for a medical article that can be prepared from a first polymer that is synthetic, soluble in a polar liquid, and having first reactive groups, and a second polymer that is synthetic, hydrophilic, and that includes second reactive groups. The first reactive groups and a portion of the second reactive groups react to bond the first polymer to the second polymer. A portion of the second reactive groups remains unbonded which, upon neutralization, provide lubricious properties to the coating. In some aspects the coating is formed using a crosslinking agent having latent reactive groups. The coatings provide particularly long dry out times and are very useful for catheterization processes. In addition, the coatings can be subject to sterilization with ethylene oxide and retain very good durable and lubricious properties.
Abstract: The invention relates to methods and apparatuses that reduce problems encountered during coating of a device, such as a medical device having a cylindrical shape. In an embodiment, the invention includes an apparatus including a bi-directional rotation member. In an embodiment, the invention includes a method with a bi-directional indexing movement. In an embodiment, the invention includes a coating solution supply member having a major axis oriented parallel to a gap between rollers on a coating apparatus. In an embodiment, the invention includes a device retaining member. In an embodiment, the invention includes an air nozzle or an air knife. In an embodiment, the invention includes a method including removing a static charge from a small diameter medical device.
Abstract: The present invention is directed to polymeric matrices for the controlled release of a hydrophilic bioactive agent. Generally, the elution control matrix includes a polymeric matrix having a first polymer and a plurality of microparticles that include the hydrophilic bioactive agent. In one embodiment, the matrix includes a polymer comprising hydrophilic and hydrophobic portions. In another embodiment, the microparticles include a crosslinked hydrophilic polymer.
Abstract: Embodiments of the invention include devices and methods for the controlled elution of nucleic acid delivery complexes. In an embodiment, the invention includes a medical device including a substrate surface, a polymeric coating disposed on the surface, the polymeric coating coupled to the substrate surface through the reaction product of a photoreactive group; the polymeric coating comprising negatively charged species on the surface; and a plurality of nucleic acid delivery complexes disposed on the polymeric coating, the nucleic acid delivery complexes comprising a nucleic acid and a cationic carrier agent complexed to the nucleic acid. Other embodiments are included herein.
Type:
Application
Filed:
April 9, 2009
Publication date:
October 22, 2009
Applicant:
SurModics, Inc.
Inventors:
Joseph Schmidt McGonigle, Aron Brent Anderson
Abstract: Positively-charged initiator polymers having a polymerization initiator group and a cationic portion are provided. The initiator polymers can be used with a polymerizable material for the formation of a polymeric matrix on a surface. The initiator polymers are particularly useful for cell encapsulation using macromers.
Type:
Grant
Filed:
April 10, 2003
Date of Patent:
September 8, 2009
Assignee:
SurModics, Inc.
Inventors:
Stephen J. Chudzik, Ronald F. Ofstead, Dale G. Swan
Abstract: The invention relates to stannous halide stabilized and/or enhanced alkaline solutions to be used in combination with calorimetric, luminescent and fluorescent assays. The buffered solutions stabilize hydrogen peroxide at a pH greater than 7.0 and preferably greater than 9.0. By stabilizing and/or enhancing hydrogen peroxide in the buffer system, the compositions used in such assays may have a higher shelf-life and provide enhanced detection of the subject analyte.
Type:
Grant
Filed:
January 3, 2007
Date of Patent:
July 21, 2009
Assignee:
SurModics, Inc.
Inventors:
Thomas M. Woerner, Joseph A. Rosebrock, Charles W. Hewitt, Heidi L. Woerner
Abstract: The invention provides methods and compositions for providing biocompatible surfaces to medical articles. In particular the invention provides biocompatible coatings with heparin activity that are able to release a bioactive agent, wherein the coatings are formed using biostable or biodegradable polymeric material and photoreactive groups.
Type:
Grant
Filed:
March 25, 2005
Date of Patent:
June 23, 2009
Assignee:
SurModics, Inc.
Inventors:
Sean M. Stucke, Ralph A. Chappa, Joseph A. Chinn
Abstract: The invention provides methods and compositions for providing biocompatible surfaces to medical articles. In particular the invention provides biocompatible coatings with heparin activity. In some aspects, the biocompatible coatings of the invention are able to release a bioactive agent. The coatings can be formed using biostable or biodegradable polymeric material and photoreactive groups. The invention also provides methods for improving the quality of bioactive agent-containing coatings by performing pre-irradiation of biocompatible coating compositions.
Type:
Grant
Filed:
March 25, 2005
Date of Patent:
June 23, 2009
Assignee:
SurModics, Inc.
Inventors:
Sean M. Stucke, Ralph A. Chappa, Joseph A. Chinn, Aron B. Anderson
Abstract: A crosslinkable macromer system and related methods of preparing the system and using the system in the form of a crosslinked matrix between a tissue site and an implant article such as a tissue implant or on the porous surface of a prosthetic device. The macromer system includes two or more polymer-pendent polymerizable groups and one or more multifunctional initiator groups. The polymerizable groups and the initiator group(s), when polymer-pendent, can be pendent on the same or different polymeric backbones. The macromer system provides advantages over the use of polymerizable macromers and separate, low molecular weight initiators, including advantages with respect to such properties as nontoxicity, efficiency, and solubility. A macromer system of the invention can be used as an interface between the tissue site and implant article in a manner sufficient to permit tissue growth through the crosslinked matrix and between the tissue site and implant.
Abstract: A coating composition and related method for use in applying a bioactive agent to a surface in a manner that will permit the bioactive agent to be released from the coating in vivo. The composition is particularly well suited for coating the surface of implantable medical device, such as a stent or catheter, in order to permit the device to release bioactive agent to the surrounding tissue over time. The composition includes a plurality of compatible polymers having different properties that can permit them to be combined together to provide an optimal combination of such properties as durability, biocompatibility, and release kinetics.
Type:
Grant
Filed:
April 6, 2005
Date of Patent:
June 9, 2009
Assignee:
SurModics, Inc.
Inventors:
David M. DeWitt, Michael J. Finley, Laurie R. Lawin
Abstract: A coating composition and related method for use in applying a bioactive agent to a surface in a manner that will permit the bioactive agent to be released from the coating in vivo. The composition is particularly well suited for coating the surface of implantable medical device, such as a stent or catheter, in order to permit the device to release bioactive agent to the surrounding tissue over time. The composition includes a plurality of compatible polymers having different properties that can permit them to be combined together to provide an optimal combination of such properties as durability, biocompatibility, and release kinetics.
Type:
Grant
Filed:
April 6, 2005
Date of Patent:
June 2, 2009
Assignee:
SurModics, Inc.
Inventors:
David M. DeWitt, Michael J. Finley, Laurie R. Lawin
Abstract: The invention relates to compositions for the cryogenic storage of biological materials and related methods. In an embodiment, the invention includes a cryopreservative composition including a chaotropic agent and a kosmotropic agent. In an embodiment, the invention includes a cryopreservative composition including urea and trimethylamine-N-oxide. In an embodiment, the invention includes a method of cryopreserving cells including contacting cells with a cryopreservative composition, the cryopreservative composition comprising a chaotropic agent and a kosmotropic agent. In an embodiment, the invention includes a method of transplanting cells into a subject, the method including administering a composition to the subject, the composition comprising an effective amount of a chaotropic agent, an effective amount of a kosmotropic agent, and cells. Other embodiments are also included herein.
Abstract: The present invention relates to methods, reagents, and substrates that can be used for, for example, immobilizing biomolecules, such as nucleic acids and proteins. In an embodiment, the present invention relates to surfaces coated with a polymer according to the present invention. In an embodiment, the present invention relates to methods for thermochemically and/or photochemically attaching molecules to a surface at a high density.
Type:
Application
Filed:
September 14, 2007
Publication date:
February 12, 2009
Applicant:
SurModics, Inc.
Inventors:
Ronald F. Ofstead, Melvin J. Swanson, Dale G. Swan
Abstract: A coating composition for use in coating implantable medical devices to improve their ability to release bioactive agents in vivo. The coating composition is particularly adapted for use with devices that undergo significant flexion and/or expansion in the course of their delivery and/or use, such as stents and catheters. The composition includes the bioactive agent in combination with a mixture of a first polymer component such as poly(butyl methacrylate) and a second polymer component such as poly(ethylene-co-vinyl acetate).
Type:
Grant
Filed:
November 17, 2005
Date of Patent:
October 28, 2008
Assignee:
SurModics, Inc.
Inventors:
Stephen J. Chudzik, Aron B. Anderson, Ralph A. Chappa, Timothy M. Kloke
Abstract: The invention relates to stannous halide stabilized and/or enhanced alkaline solutions to be used in combination with colorimetric, luminescent and fluorescent assays. The buffered solutions stabilize hydrogen peroxide at a pH greater than 7.0 and preferably greater than 9.0. By stabilizing and/or enhancing hydrogen peroxide in the buffer system, the compositions used in such assays may have a higher shelf-life and provide enhanced detection of the subject analyte.
Type:
Grant
Filed:
May 9, 2002
Date of Patent:
June 3, 2008
Assignee:
SurModics, Inc.
Inventors:
Thomas M. Woerner, Joseph A. Rosebrock, Charles W. Hewitt, Heidi L. Woerner
Abstract: The present invention provides bioerodable constructs for controlled release of bioactive materials. In a preferred mode, the constructs may be utilized adjacent to a biological surface. The constructs are based on a blend of two or more poly(ester-amide) polymers (PEA). Such polymers may be prepared by polymerization of a diol (D), a dicarboxylic acid (C) and an alpha-amino acid (A) through ester and amide links in the form (DACA)n. An example of a (DACA)n polymer is shown below in formula II. Suitable amino acids include any natural or synthetic alpha-amino acid, preferably neutral amino acids.
Abstract: The invention relates to methods and apparatuses that reduce problems encountered during coating of a device, such as a medical device having a cylindrical shape. In an embodiment, the invention includes an apparatus including a bi-directional rotation member. In an embodiment, the invention includes a method with a bi-directional indexing movement. In an embodiment, the invention includes a coating solution supply member having a major axis oriented parallel to a gap between rollers on a coating apparatus. In an embodiment, the invention includes a device retaining member. In an embodiment, the invention includes an air nozzle or an air knife. In an embodiment, the invention includes a method including removing a static charge from a small diameter medical device.