Patents Assigned to Syracuse University
  • Patent number: 11648374
    Abstract: An anti-fouling surface having micron scale pillars embedded with Fe3O4 nanoparticles is designed. The pillars may be repeatedly induced to move according to a predetermined frequency, such as one that mimic that of the beating movement of natural cilia, through the application of a magnetic field. When square-shaped pillars with a height of 10 ?m, width of 2 ?m, and inter-pattern distance of 5 ?m actuated for three minutes, more than 99.9 percent of biofilm cells were detached and via gentle rinsing from the surface having the pillars. The anti-fouling surface enables effective prevention of biofilm formation and removal of established biofilms, and can be applied to a broad spectrum of polymers.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: May 16, 2023
    Assignee: SYRACUSE UNIVERSITY
    Inventors: Dacheng Ren, Huan Gu
  • Publication number: 20230137251
    Abstract: An electrochemical biosensor based on magnetically coupled LC sensors for the rapid detection of microbial growth and sensitivity to microbials. The engineered LC sensors can be placed in 96 well plates and communicate the reading remotely with a receiver coil for signal analysis. The sensors were validated by testing the growth of Escherichia. coli, Staphylococcus. aureus, and Pseudomonas aeruginosa in the presence and absence of different antibiotics. Drug-resistant strains were used as controls. Bacterial growth was detected within 30 mins of culture inoculation, allowing rapid determination of antibiotic susceptibility at the phenotypic level. The pattern shown in the LC sensor AST is consistent with results collected with traditional optical density (OD) 600 nm measurement, additional validation was also performed with lysogeny broth (LB) dosed with fetal bovine serum (FBS). With the compatibility with 96-well plates, this rapid AST may be used for low-cost, point-of-care applications.
    Type: Application
    Filed: October 25, 2022
    Publication date: May 4, 2023
    Applicant: SYRACUSE UNIVERSITY
    Inventors: Dacheng Ren, Yikang Xu
  • Patent number: 11625449
    Abstract: A system that provides intent-oriented browsing powered by machine learning and crowdsourcing. The system allows users to enter their intents, which are then assigned to target pages via supervised learning models based on hyperlinks and contributions made by other users. The system has a prediction server that is programmed to receive hyperlinks from a website and return target hyperlinks based on known intent, a user interface for inputting user intent, and a browser programmed to connect to the intent repository and to the prediction server via a user script. The list of supported intents can grow over time based on correct page marks for intent-page mappings as well as via continuous training of machine learning models.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: April 11, 2023
    Assignee: SYRACUSE UNIVERSITY
    Inventors: Natá Barbosa, Yang Wang
  • Publication number: 20230079206
    Abstract: A torchiere style sanitizing device for disinfecting airborne pathogens while providing aesthetic area lighting. A reversible fan exchanges air between the upper room air plume and the lower air plume by passing the air through a center disinfecting section. The disinfection section may include a linear UV-C light, reflective tube, and light trap positioned at one or both ends of the disinfection section to maximize the exposure of the air to the UV-C light and contain the UV-C light within the device. The device includes a conventional illumination source in an upper shade and can selectively provide one of more of room air flow, room air disinfection, and room illumination.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 16, 2023
    Applicant: SYRACUSE UNIVERSITY
    Inventors: Brian D. Carter, Eric A. Schiff
  • Patent number: 11605231
    Abstract: A low-cost, low-power, stand-alone sensor platform having a visible-range camera sensor, a thermopile array, a microphone, a motion sensor, and a microprocessor that is configured to perform occupancy detection and counting while preserving the privacy of occupants. The platform is programmed to extract shape/texture from images in spatial domain; motion from video in time domain; and audio features in frequency domain. Embedded binarized neural networks are used for efficient object of interest detection. The platform is also programmed with advanced fusion algorithms for multiple sensor modalities addressing dependent sensor observations. The platform may be deployed for (i) residential use in detecting occupants for autonomously controlling building systems, such as HVAC and lighting systems, to provide energy savings, (ii) security and surveillance, such as to detect loitering and surveil places of interest, (iii) analyzing customer behavior and flows, (iv) identifying high performing stores by retailers.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 14, 2023
    Assignee: SYRACUSE UNIVERSITY
    Inventors: Senem Velipasalar, Sek Meng Chai, Aswin Nadamuni Raghavan
  • Patent number: 11569871
    Abstract: A multiple-input multiple-output (MIMO) communication system that addresses three major challenges in airborne MIMO communications, namely, antenna blockage due largely to the movement and orientation of the airborne platforms, the presence of unknown interference inherent to the intended application, and the lack of channel state information (CSI) at the transmitter. The system is implemented on a Diagonal Bell-Labs Layered Space-Time (D-BLAST) MIMO architecture and includes spatial spreading to counter antenna blockage, temporal spreading to mitigate signal to interference and noise ratio degradation due to intended or unintended interference, and a simple low rate feedback scheme to enable real time adaptation in the absence of full transmitter CSI.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: January 31, 2023
    Assignee: SYRACUSE UNIVERSITY
    Inventors: Biao Chen, Yang Liu, Janek Mroczek
  • Patent number: 11559203
    Abstract: A system and method for determining the pH of tissue in vivo. A Raman spectrometer is used to collect Raman spectra from the target tissue. The Raman spectra are baseline subtracted and assessed to determine the concentration of HPO4?2 and H2PO4?1 for the purposes of calculating the pH. The approach was validate in vitro using PBS solutions of known pH. The approach was confirmed in vivo using rat and swine models by probing the immediate vicinity of a contusive spinal cord injury (SCI) in the first minutes and hours after injury. Using a dynamic analysis and the Henderson-Hasselbalch equation, the average of (N=12) noninvasive Raman-based pH measurements of CSF was 7.073±0.156 and at >95% confidence there is no statistically significant difference between the Raman-based and the physically sampled results.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: January 24, 2023
    Assignee: SYRACUSE UNIVERSITY
    Inventor: Joseph Chaiken
  • Patent number: 11537390
    Abstract: A Smart Products Lifecycle Management (sPLM) system that is built upon the smart component data model and the NPD3 process model, is enabling engineers, data scientists, and other stakeholders to collaborate on a common platform to develop smart products. The sPLM system is validated by applying it to unmanned aircraft systems (UAS) development and operations, referred to as UsPLM. The UsPLM has shared lifecycle management functions that are provided as web services and can be applied to all digital models of UAS devices, software, autonomy functions, and missions. The individual models can be versioned, tracked, and be composed with other compatible models, if needed. The rule and scoring engines embedded in the UsPLM allow building and executing configuration rules, regulation rules, and various machine-learning models. This facilitates modular UAS architecture design so that the UAS has the flexibility to be reconfigured for various mission applications.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: December 27, 2022
    Assignee: Syracuse University
    Inventors: Utpal Roy, Yunpeng Li
  • Publication number: 20220403121
    Abstract: A patterned surface structure formed from a ferrofluidic polymer resin having a plurality of magnetic nanoparticles. The polymer resin is patterned with a magnetic field that is applied to the ferrofluidic polymer resin during curing. The ferrofluidic polymer resin may be cast over a non-magnetic planar substrate. A magnetic field is applied to the ferrofluidic polymer resin to induce a pattern in a surface of the ferrofluidic polymer resin. The patterned ferrofluidic polymer resin is then cured to form the permanently patterned surface.
    Type: Application
    Filed: June 22, 2022
    Publication date: December 22, 2022
    Applicant: SYRACUSE UNIVERSITY
    Inventor: Ian D. Hosein
  • Publication number: 20220397564
    Abstract: A developmental toxicity screening assay using spatially organized cardiac organoids with contracting cardiomyocytes in the center surrounded by stromal cells distributed along the pattern perimeter engineered from human induced pluripotent stem cells (hiPSCs). Cardiac organoids generated from 600 ?m-diameter circles were used as a developmental toxicity screening assay for the quantification of the embryotoxic potential of nine pharmaceutical compounds. The cardiac organoids were demonstrated as having a potential use as an in vitro platform for studying organoid structure-function relationships, developmental processes, and drug-induced cardiac developmental toxicity.
    Type: Application
    Filed: June 10, 2022
    Publication date: December 15, 2022
    Applicant: SYRACUSE UNIVERSITY
    Inventors: Zhen Ma, Plansky Hoang
  • Patent number: 11512417
    Abstract: An enzyme responsive shape memory polymer formed from a glassy, cross-linked shape memory polymer that incorporates ester bonds that are responsive to the present of an enzyme. PCL-based polyurethanes (featuring simple alternation of PCL diol and lysine-based diisocyanate) are degradable by Amano lipase PS. A non-degradable thermoplastic elastomer may be dual electrospun with a polycaprolactone based TPU with the fixing phase compressed so that the composite is ready for enzymatically triggered contraction. Alternatively, the elastomer may be a PCL copolymer-based polyurethane amorphous elastomer that is both degradable and elastomeric and put into compression so that upon enzymatic degradation of the elastomeric phase the scaffold expands.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: November 29, 2022
    Assignee: SYRACUSE UNIVERSITY
    Inventors: James Henderson, Patrick T. Mather, Shelby Buffington
  • Patent number: 11507859
    Abstract: In an example, a computer-implemented method to structure an analytical workflow that improves reasoning based on a problem context and demonstrated abilities of each individual user may include displaying a reasoning problem to an analyst. The method may include receiving input from the analyst to identify a reasoning problem type of the reasoning problem. providing a recommended analytic approach for the reasoning problem type to the analyst. The method may include assisting the analyst in analyzing and evaluating one or more information sources relevant to the reasoning problem. The method may include guiding the analyst through a structured technique (ST) to support reasoning of the analyst in formulation of a solution to the reasoning problem. The method may include generating a report that includes the analyst's solution to the reasoning problem based on input from the analyst.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: November 22, 2022
    Assignees: COLORADO STATE UNIVERSITY RESEARCH FOUNDATION, Syracuse University, The Arizona Board of Regent on Behalf of the University of Arizona
    Inventors: Jennifer Stromer-Galley, Brian McKernan, Patricia Rossini, Carsten Oesterlund, Lael Jeremy Schooler, James Eric Folkestad, Benjamin Clegg, Rosa Mikeal Martey, Kate Marian Kenski, Roc Aron Myers, Sarah M. Taylor
  • Publication number: 20220354667
    Abstract: A dampening device that can be coupled to a medical implant to eliminate harmful electrical oscillations. The device includes circuity that detects harmful electrical oscillations in the implant. The device also includes circuity that generates cancelling electrical signals that counter the detected electrical oscillations. Alternatively, in a medical implant having a taper junction such as a standard hip implant, resistance welding of the taper junction just prior to surgical implanting may be performed after the appropriately dimensioned components are selected to eliminate a metal on metal interface where corrosion is most likely to occur.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 10, 2022
    Applicant: SYRACUSE UNIVERSITY
    Inventors: Jeongmin Ahn, Thomas Welles
  • Publication number: 20220356080
    Abstract: A two-stage treatment process for destroying per- and polyfluoroalkyl substances (PFAS) in an aqueous stream. The two-stage treatment process uses a combination of multifunctional crystalline molecular sieves, such as zeolites and zeotypes, to separate PFAS from the aqueous stream, catalytically decompose and defluorinate any PFAS molecules, and generate non-toxic waste products that are safe for disposal. The first stage includes adsorption of the PFAS within one of a pair of vessels containing porous, hydrophobic, hydrothermally stable molecular sieves, dehydration of the captured PFAS on the sieves, and catalytic ozonation of the captured PFAS molecules on the dried sieves. The second stage involves catalytic decomposition and neutralization of the ozonation results with one of a pair of vessels including a zeolite-supported CaO catalyst, catalytic oxidation of any toxic CO generated by the decomposition, and an acid wash for regeneration of the spent catalyst.
    Type: Application
    Filed: November 18, 2021
    Publication date: November 10, 2022
    Applicant: SYRACUSE UNIVERSITY
    Inventor: Viktor Cybulskis
  • Publication number: 20220336863
    Abstract: A rechargeable calcium battery formed from a calcium metal anode, a cathode formed from a composite carbon/sulfur (C/S), a metal oxide, or a metal sulfide, and a multi-component electrolyte containing a mixture of different salts. The calcium anode is formed as a thin, pure calcium metal foil that is polished and combined with a copper collector for redox activity. The cathode may be formed from a carbon-sulfur (CS) composite or metal oxide/sulfide, such as CaMxOy or CaMxSy, or formed from binary and ternary metals, such as CaM1aM2bOy/Sy and CaM1aM2bM3cOy/Sy. The battery also includes a multi-component electrolyte including calcium salts, such as Ca(TSFI)2, Ca(ClO4)2, Ca(BF4)2, and CaPF6, or the pairing of lithium, sodium and potassium salts with one of the anions, such as Ca(TFSI), NaPF6, and Li(TFSI).
    Type: Application
    Filed: April 19, 2022
    Publication date: October 20, 2022
    Applicant: Syracuse University
    Inventor: Ian Hosein
  • Publication number: 20220325913
    Abstract: An HVAC control system having a cloud-based optimization engine in communication with a local building hub that interfaces with the building HVAC system and room units. The cloud-based optimization engine implements an optimal and predictive control strategy to integrate occupancy prediction, weather forecasting, and modeling of indoor infection risk, indoor air quality, and building energy consumptions. The control strategy includes a model-based predictive control and a model-free reinforcement learning approach. The control strategy considers outdoor weather (both thermal and air quality) conditions, indoor occupancy and requirements for IAQ and infectious risk reduction to decide whether outdoor air should be introduced and how much fresh air will be introduced into the space. Communications with the building hub allow the local HVAC unit to be driven according to the optimization plan. Individual room sensing units can provide local sensor data to the cloud-based optimization engine.
    Type: Application
    Filed: March 29, 2022
    Publication date: October 13, 2022
    Applicant: SYRACUSE UNIVERSITY
    Inventors: Bing Dong, Jianshun Zhang
  • Patent number: 11458216
    Abstract: The disclosure describes a method of reducing or preventing the growth of microbes on the surface of an object, wherein the object is of such material that it can act as a working electrode. The method comprises the steps of providing a counter electrode, and a reference electrode. The object is used as the working electrode. A first electrical current is passed through the working and counter electrodes. The first current through the counter electrode is varied such that a first electric potential of the working electrode is constant relative to the electric potential of the reference electrode. In some embodiments, a second electrical current is passed through the counter electrode such that a second electric potential of the working electrode is constant relative to the electric potential of the reference electrode.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: October 4, 2022
    Assignees: The Research Foundation for The State University of New York, Syracuse University
    Inventors: Mark Ehrensberger, Anthony A. Campagnari, Esther Takeuchi, Nicole Luke-Marshall, Jeremy Gilbert, Edward P. Furlani, Albert H. Titus, Amir Mokhtare
  • Publication number: 20220298216
    Abstract: Imaging agents that can bind to ghrelin O-acyltransferase (GOAT) without binding to the ghrelin receptor (GHS-R1a). The imaging agents comprise a base structure for selective binding to GOAT that is coupled via an amino acid linker to a chemical group to enable imaging such as a fluorescent label, radioactive tracer, or metal chelator. For example, the imaging agent may comprise a ghrelin substrate mimetic inhibitor incorporating an unmodified 2,3-diaminopropanoic acid (Dap) group at the site analogous to serine 3. These agents enable specific detection and imaging of GOAT versus the GHS-R1a receptor in a variety of biological contexts.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Applicant: SYRACUSE UNIVERSITY
    Inventor: James L. Hougland
  • Patent number: 11415511
    Abstract: The invention provides a method of determining turbidity and concentration simultaneously a sample by irradiating the sample with a single incident wavelength and simultaneously measuring wavelength shifted (IE) and unshifted (EE) light emitted. A relative volume of light emitted from two phases may be determined, wherein the two phases comprise a first Rayleigh and Mie scattering and fluorescent phase associated with suspended particles, and a second, non-scattering but fluorescent phase associated with suspending solution. Volumes of the phases and/or concentrations of specific fluorophores or Raman active species are calculated from the volume of light emitted by the first phase relative to the total volume of light emitted from the first and second phases.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: August 16, 2022
    Assignee: Syracuse University
    Inventors: Joseph Chaiken, Jerry Goodisman
  • Patent number: 11406792
    Abstract: A system of topographic patterns for the prevention of bacterial adhesion and biofilm formation. The patterns may be provided on the surfaces of certain devices that are prone to bacterial adhesion and biofilm formation, such as urinary catheters. To reduce bacterial adhesion and biofilm formation, and to remove existing biofilms, the patterns are induced to transform from a first topography to a second topography. For example, the surface patterns may be formed from a shape memory polymer and then heated to transform the patterns from the first topography to the second topography to dislodge bacteria and prevent fouling.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: August 9, 2022
    Assignee: Syracuse University
    Inventors: Dacheng Ren, Huan Gu