Abstract: A bioinspired protein pore-based nanostructure that can provide selective, real-time sampling of protein-protein interactions at single-molecule resolution. This modular nanostructure relied on a single polypeptide chain that encompassed a heavily truncated outer membrane protein, a highly flexible connector, a protein receptor element, as well as a polypeptide adapter. The presence of a protein ligand analyte in solution produced reversible binding and release events, in the form of discrete and stochastic current transitions between open substates of the transmembrane pore, the nature of which depend on both the amount of protein ligand analyte and the strength of the transient PPIs in aqueous phase.
Abstract: A system for using radio frequency (RF) communication signals to extract situational awareness information thorough deep learning. Pre-processing is performed to maximally preserve discriminating features in spatial, temporal and frequency domains. A specially designed neural network architecture is used for handling complex RF signals and extracting spatial, temporal and frequency domain information. Data collection and training is used so that the learning system desensitizes from features orthogonal to the underlying classification problem.
Abstract: Synthetic disaccharide hydrocarbons (DSHs) that reactive bacterials swarming motility and inhibit bacterial adhesion and biofilm formation. A library of DSHs were tested in several experiment for the impact on various Pseudomonas aeruginosa populations and compared against existing compounds to determine efficacy and utility. Certain DSHs were also to determine the ability to clear bacteria in a mouse pneumonia model.
Type:
Application
Filed:
October 2, 2020
Publication date:
January 28, 2021
Applicants:
Syracuse University, The Research Foundation for the State University of New York
Abstract: A cooling device for a heat source, such as an electronic component, has a single or set of nano- and/or micro-sized channel(s) connected to a single or multiple reservoir(s). The heat source causes nucleation within a channel, and a vapor bubble forms removing heat from the heat source via evaporation of liquid to vapor in the bubble and condensation of the generated vapor at the cooler ends of the bubble. Thus, the channel operates as a passive heat pipe and removes heat from the source by passively circulating the cooling fluid between the vapor bubble and the reservoir(s).
Abstract: A structural shape memory assisted self-healing polymer formed by laminating thin layers of an ionomer, such as a member of the poly(styrene sulfonate) (PSS) family of ionomers, with a WEGP-type SMP, such as atactic poly(styrene) (PS) with molecular weight in the 200 kDa range (or alternatively poly(methyl methacrylate) (PMMA)) in combination with polycyclooctene (PCO). The self-healing polymer may also comprise an interpenetrating, immiscible polymer network (IPN) based on a blend of polystyrene and polystyrene sulfonate (PSS).
Abstract: A quantum computing transducer having a dense, tunable superconducting metamaterial transmission line (SMTL) spectrum that can resonantly enhance sideband scattering. The resonant enhancement of scattering boosts the scattering rate, and hence also the microwave-to-optical-interface (MOQI) transduction efficiency. Moreover, the integration of mechanical elements with the SMTL to realize the MOQI yields a platform that can be readily interfaced on chip, such as in an integrated circuit, with superconducting-qubit architectures to facilitate the local implementation of two of the essential functionalities required for a quantum repeater, i.e., data egress/ingress and a quantum processing module.
Abstract: A system configured to characterize a ratio of contributors to a DNA mixture within a sample, the system including: a sample preparation module configured to generate initial data about the DNA mixture within the sample; a processor comprising a ratio of contributors determination module configured to: (i) receive the generated initial data; (ii) analyze the generated initial data to determine the ratio of contributors to the DNA mixture within the sample; and an output device configured to receive the determined ratio of contributors from the processor, and further configured to output information about the received determined ratio of contributors.
Type:
Grant
Filed:
December 2, 2016
Date of Patent:
December 1, 2020
Assignee:
Syracuse University
Inventors:
Michael Marciano, Jonathan D. Adelman, Laura C. Haarer
Abstract: A metallo-dielectric waveguide array used as an encapsulation material for silicon solar cells. The array is produced through light-induced self-writing combined with in situ photochemical synthesis of silver nanoparticles. Each waveguide comprises a cylindrical core consisting of a high refractive index polymer and silver nanoparticles homogeneously dispersed in its medium, all of which are surrounded by a low refractive index common cladding. These waveguide array films are processed directly over a silicon solar cell.
Abstract: Disclosed herein are methods and compositions useful in the treatment and/or prevention of a disease or indication associated with accumulation of a bisretinoid, for example A2E. In many embodiments, the disclosed methods and compositions are useful in treating an eye disease, for example macular degeneration.
Abstract: The use of lipids in the taper junction or other metal on metal interface of a modular orthopedic implant to prevent fretting corrosion and increase the pull off load. The incorporation of lipids or a lipid-like substrate within the taper junction increases the onset load and decreases the amount of corrosion. The incorporation of lipids also increases the pull-off load necessary to separate the head from the neck. As a result, the use of lipids in the taper junction of an orthopedic implant should reduce the need for revisions of implants, such as such as knee and hip replacements, which are often needed because of fretting corrosion.
Abstract: A micro environmental control system that can remove or add 30W from or to the near range personal microenvironment of a user. For cooling, the ?X uses a micro vapor compression system during the un-occupied period to freeze a phase-change-material in a thermal storage module. A fan then moves air over the phase-change-material to deliver cooled air. Heating is delivered by a small electric heater integrated into a condensing unit. The resulting system is inexpensive to build and uses a limited amount of energy.
Abstract: A communication system that minimizes the transmission of pilot symbols while ensuring real-time channel tracking and symbol detection. The system employs a multiple-input multiple-output (MIMO) transmitter-receiver pair where there are many more receive antennas than transmit antennas. Communication occurs over a wide band RF channel via orthogonal frequency division multiplexing (OFDM) that employs a large number of sub-carriers.
Abstract: An integrated guidance and feedback control scheme for steering an underactuated vehicle through desired waypoints in three-dimensional space. The guidance and control algorithm takes as an input the desired trajectory for the translational motion that passes through the given waypoints, and autonomously generates the desired trajectory for the attitude based on the desired thrust direction to achieve the translational motion trajectory. A feedback control law is obtained to steer the underactuated vehicle towards the desired trajectories in translation and rotation.
Type:
Application
Filed:
September 15, 2017
Publication date:
September 3, 2020
Applicant:
SYRACUSE UNIVERSITY
Inventors:
Amit K. Sanyal, Sasi Prabhakaran Viswanathan
Abstract: The present disclosure provides compositions that inhibit the SH2-containing inositol 5?-phosphatase (SHIP), as well as methods using such compositions for use in treating or ameliorating the effects of a medical condition in a subject.
Type:
Grant
Filed:
December 30, 2016
Date of Patent:
August 11, 2020
Assignees:
SYRACUSE UNIVERSITY, THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY of New York
Inventors:
William G. Kerr, Sandra Fernandes Denney, John D. Chisholm
Abstract: A system and method for determining the pH of tissue in vivo. A Raman spectrometer is used to collect Raman spectra from the target tissue. The Raman spectra are baseline subtracted and assessed to determine the concentration of HPO4?2 and H2PO4?1 for the purposes of calculating the pH. The approach was validate in vitro using PBS solutions of known pH. The approach was confirmed in vivo using rat and swine models by probing the immediate vicinity of a contusive spinal cord injury (SCI) in the first minutes and hours after injury. Using a dynamic analysis and the Henderson-Hasselbalch equation, the average of (N=12) noninvasive Raman-based pH measurements of CSF was 7.073±0.156 and at >95% confidence there is no statistically significant difference between the Raman-based and the physically sampled results.
Abstract: A system and method for automated detection of figure element reuse. The system can receive articles or other publications from a user input or an automated input. The system then extracts images from the articles and compares them to reference images from a historical database. The comparison and detection of matches occurs via a copy-move detection algorithm implemented by a processor of the system. The processor first locates and extracts keypoints from a submission image and finds matches between those keypoints and the keypoints from a reference image using a near neighbor algorithm. The matches are clustered and the clusters are compared for keypoint matching. Matched clusters are further compared for detectable transformations. The processor may additionally implement natural language processing to filter matches based on the context of the use of the submission image in the submission and a patch detector for removing false positive features.
Abstract: The present invention relates to the digestion of peptides by pancreatic proteases and, more specifically, to compositions and methods for protecting against protease digestion.
Type:
Grant
Filed:
May 20, 2016
Date of Patent:
July 21, 2020
Assignee:
Syracuse University
Inventors:
Robert Doyle, Jonathan D. Bortz, David S. Hermelin
Abstract: A non-catalytic microcombustion based FFC for the direct use of hydrocarbons for power generation. The potential for high FFC performance (450 mW·cm?2 power density and 50% fuel utilization) in propane/air microcombustion exhaust was demonstrated. The micro flow reactor was used as a fuel reformer for equivalence ratios from 1-5.5. Soot formation in the micro flow reactor was not observed at equivalence ratios from 1 to 5.5 and maximum wall temperatures ranging from 750 to 900° C. H2 and CO concentrations in the exhaust were found to have a strong temperature dependence that varies with the maximum wall temperature and the local flame temperature.
Abstract: A variety of polymeric composites with tunable mechanical stiffness and electrical conductivity are claimed herein. For example, the composite may have an elastomeric matrix, a plurality of tunable particles, and a plurality of conductive fibers embedded in the matrix. The composites may also be a tunable foam matrix and an elastomeric matrix. In some embodiments, the composites are a low melting point alloy (LMPA) foam infiltrated by an elastomer, whose stiffness can be tuned by more than two orders of magnitude through external heating. In other embodiments, the composite may be a conductive particle-fiber-matrix three-component composite capable of changing its elastic rigidity rapidly and reversibly when powered with electrical current.
Abstract: The present invention describes the use of nanoparticle interfaces to chemically process solid nanomaterials into ones with tailorable core-void-shell architectures. The internal void sizes are proportional to the nanoparticle size, the shell thickness and composition, and can be either symmetric or asymmetric depending on the nature of the interface, each of which is controlled by the process of making.