Patents Assigned to Taiwan Semiconductor
  • Publication number: 20240162310
    Abstract: Semiconductor structures and methods for manufacturing the same are provided. The semiconductor structure includes a gate structure formed over a substrate, and a first source/drain (S/D) structure formed adjacent to the gate structure. The semiconductor structure includes a first contact structure formed over a first side of the first S/D structure, and a portion of the first contact structure is lower than a top surface of the first S/D structure. The semiconductor structure includes a second contact structure formed over a second side of the first S/D structure, and the second contact structure is in direct contact with the first contact structure.
    Type: Application
    Filed: March 8, 2023
    Publication date: May 16, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ta-Chun LIN, Wen-Chiang HONG, Chih-Hao CHANG
  • Publication number: 20240162347
    Abstract: The present disclosure describes a semiconductor device includes a first fin structure, an isolation structure in contact with a top surface of the first fin structure, a substrate layer in contact with the isolation structure, an epitaxial layer in contact with the isolation structure and the substrate layer, and a second fin structure above the first fin structure and in contact with the epitaxial layer.
    Type: Application
    Filed: January 26, 2024
    Publication date: May 16, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chansyun David YANG, Keh-Jeng CHANG, Chan-Lon YANG
  • Publication number: 20240162159
    Abstract: Semiconductor package includes a pair of dies, a redistribution structure, and a conductive plate. Dies of the pair of dies are disposed side by side. Each die includes a contact pad. Redistribution structure is disposed on the pair of dies, and electrically connects the pair of dies. Redistribution structure includes an innermost dielectric layer, an outermost dielectric layer, and a redistribution conductive layer. Innermost dielectric layer is closer to the pair of dies. Redistribution conductive layer extends between the innermost dielectric layer and the outermost dielectric layer. Outermost dielectric layer is furthest from the pair of dies. Conductive plate is electrically connected to the contact pads of the pair of dies. Conductive plate extends over the outermost dielectric layer of the redistribution structure and over the pair of dies. Vertical projection of the conductive plate falls on spans of the dies of the pair of dies.
    Type: Application
    Filed: January 25, 2024
    Publication date: May 16, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Hao Tsai, Chen-Hua Yu, Chuei-Tang WANG, Wei-Ting Chen, Chien-Hsun Chen, Shih-Ya Huang
  • Publication number: 20240162171
    Abstract: A device die including a first semiconductor die, a second semiconductor die, an anti-arcing layer and a first insulating encapsulant is provided. The second semiconductor die is stacked over and electrically connected to the first semiconductor die. The anti-arcing layer is in contact with the second semiconductor die. The first insulating encapsulant is disposed over the first semiconductor die and laterally encapsulates the second semiconductor die. Furthermore, methods for fabricating device dies are provided.
    Type: Application
    Filed: January 21, 2024
    Publication date: May 16, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wei Chen, Tzuan-Horng Liu, Chia-Hung Liu, Hao-Yi Tsai
  • Publication number: 20240162277
    Abstract: Various magnetic thin film inductor structures are disclosed that include one or more magnetic thin film (MTF) materials. During operation, an electric field passes through one or more conductive windings which, in turn, generates a magnetic field for storing energy within these magnetic thin film inductor structures. The magnetic thin film (MTF) materials within these magnetic thin film inductor structures effectively attract magnetic flux lines of this magnetic field. As a result, any magnetic leakage resulting from the magnetic field generated by these magnetic thin film inductor structures onto nearby electrical, mechanical, and/or electro-mechanical devices is lessened when compared to magnetic leakage resulting from the magnetic field generated by other inductor structures not having the one or more MTF materials.
    Type: Application
    Filed: January 24, 2024
    Publication date: May 16, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Alan ROTH, Eric SOENEN, Paul RANNUCI
  • Publication number: 20240162321
    Abstract: A semiconductor structure includes a substrate, a dielectric wall, and two device units. The dielectric wall has two side surfaces opposite to each other. The two device units are respectively formed at the two side surfaces of the dielectric wall. Each of the device units includes channel features, a gate feature and a dielectric filler unit. The channel features are disposed on a corresponding one of the side surfaces of the dielectric wall, and spaced apart from each other. The gate feature is formed around the channel features and disposed on the corresponding one of the side surfaces of the dielectric wall. The dielectric filler unit includes a plurality of first dielectric fillers, each of which is disposed between the dielectric wall and a corresponding one of the channel features. The first dielectric fillers have a dielectric constant greater than that of the dielectric wall.
    Type: Application
    Filed: February 22, 2023
    Publication date: May 16, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huang-Chao CHANG, Ta-Chun LIN, Chun-Sheng LIANG, Jhon-Jhy LIAW
  • Publication number: 20240161798
    Abstract: A device includes a memory array, bit line pairs, word lines, a modulation circuit and a control signal generator. The memory array has bit cells arranged in rows and columns. Each bit line pair is connected to a respective column of bit cells. Each word line is connected to a respective row of bit cells. The modulation circuit is coupled with at least one bit line pair. The control signal generator is coupled with the modulation circuit. The control signal generator includes a tracking wiring with a tracking length positively correlated with a depth distance of the word lines. The control signal generator is configured to produce a control signal, switching to a first voltage level for a first time duration in reference with the tracking length, for controlling the modulation circuit. A method of controlling aforesaid device is also disclosed.
    Type: Application
    Filed: January 25, 2024
    Publication date: May 16, 2024
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TSMC NANJING COMPANY LIMITED, TSMC CHINA COMPANY LIMITED
    Inventors: Xiu-Li YANG, He-Zhou WAN, Mu-Yang YE, Lu-Ping KONG, Ming-Hung CHANG
  • Publication number: 20240162083
    Abstract: The present disclosure relates to a method for forming a semiconductor device includes forming an opening between first and second sidewalls of respective first and second terminals. The first and second sidewalls oppose each other. The method further includes depositing a first dielectric material at a first deposition rate on top portions of the opening and depositing a second dielectric material at a second deposition rate on the first dielectric material and on the first and second sidewalls. The second dielectric material and the first and second sidewalls entrap a pocket of air. The method also includes performing a treatment process on the second dielectric material.
    Type: Application
    Filed: January 24, 2024
    Publication date: May 16, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin LIANG, Chen-Han WANG, Keng-Chu LIN, Tetsuji UENO, Ting-Ting CHEN
  • Publication number: 20240161803
    Abstract: A memory system including a plurality of memory cells, a plurality of word lines, a plurality of bit lines, and a plurality of source lines. The plurality of memory cells are arranged in rows and columns, each of the plurality of memory cells having a gate, a drain, and a source. In the plurality of word lines, each of the word lines having a corresponding row, wherein each of the word lines is coupled to the gates of the memory cells in the corresponding row. In the plurality of bit lines and the plurality of source lines, each of the bit lines and each of the source lines having a corresponding column, where each of the bit lines is connected to the drain of the memory cells in the corresponding column and each of the source lines is connected to the source of the memory cells in the corresponding column.
    Type: Application
    Filed: January 22, 2024
    Publication date: May 16, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Katherine H. CHIANG, Chung-Te LIN
  • Publication number: 20240162336
    Abstract: Semiconductor structures and methods for manufacturing the same are provided. The semiconductor structure includes a first stack structure extends above the isolation structure, and the first stack structure includes a plurality of first nanostructures along a first direction. The semiconductor structure also includes a second stack structure formed adjacent to the first stack structure, and the second stack structure includes a plurality of second nanostructures along the first direction. A first dielectric wall between the first stack structure and the second stack structure, and the first dielectric wall is directly over a first portion of the isolation structure and surrounded by a second portion of the isolation structure, and a top surface of the first portion of the isolation structure is lower than a top surface of the second portion of the isolation structure.
    Type: Application
    Filed: March 8, 2023
    Publication date: May 16, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Heng TSAI, Chun-Sheng LIANG
  • Publication number: 20240162088
    Abstract: An integrated circuit device includes an interconnect layer, a memory structure, a third conductive feature, and a fourth conductive feature. The interconnect layer includes a first conductive feature and a second conductive feature. The memory structure is over and in contact with the first conductive feature. The memory structure includes at least a resistance switching element over the first conductive feature. The third conductive feature, including a first conductive line, is over and in contact with the second conductive feature. The fourth conductive feature is over and in contact with the memory structure. The fourth conductive feature includes a second conductive line, a top surface of the first conductive line is substantially level with a top surface of the second conductive line, and a bottom surface of the first conductive line is lower than a bottommost portion of a bottom surface of the second conductive line.
    Type: Application
    Filed: January 25, 2024
    Publication date: May 16, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsia-Wei CHEN, Fu-Ting SUNG, Yu-Wen LIAO, Wen-Ting CHU, Fa-Shen JIANG, Tzu-Hsuan YEH
  • Publication number: 20240161822
    Abstract: A memory device includes a plurality of memory cells; a word line, connected to one of the plurality of memory cells, that is configured to provide a first WL pulse having a rising edge and a falling edge that define a pulse width of the first WL pulse; a first tracking WL, formed adjacent to the memory cells, that is configured to provide, via being physically or operatively coupled to a bit line (BL) configured to write a logic state to the memory cell, a second WL pulse having a rising edge with a decreased slope; and a first tracking BL, configured to emulate the BL, that is coupled to the first tracking WL such that the pulse width of the first WL pulse is increased based on the decreased slope of the rising edge of the second WL pulse.
    Type: Application
    Filed: January 19, 2024
    Publication date: May 16, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-jer Hsieh, Yu-Hao Hsu, Zhi-Hao Chang, Cheng Hung Lee
  • Publication number: 20240162094
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate, a conductive feature on the substrate, and an electrical connection structure on the conductive feature. The electrical connection includes a first grain made of a first metal material, and a first inhibition layer made of a second metal layer that is different than the first metal material. The first inhibition layer extends vertically along a first side of a grain boundary of the first grain and laterally along a bottom of the grain boundary of the first grain.
    Type: Application
    Filed: January 5, 2024
    Publication date: May 16, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Chuan CHIU, Jia-Chuan YOU, Chia-Hao CHANG, Chun-Yuan CHEN, Tien-Lu LIN, Yu-Ming LIN, Chih-Hao WANG
  • Publication number: 20240162084
    Abstract: A method for manufacturing a semiconductor structure includes preparing a dielectric structure formed with trenches respectively defined by lateral surfaces of the dielectric structure, forming spacer layers on the lateral surfaces, filling an electrically conductive material into the trenches to form electrically conductive features, selectively depositing a blocking layer on the dielectric structure, selectively depositing a dielectric material on the electrically conductive features to form a capping layer, removing the blocking layer and the dielectric structure to form recesses, forming sacrificial features in the recesses, forming a sustaining layer to cover the sacrificial features; and removing the sacrificial features to obtain the semiconductor structure formed with air gaps confined by the sustaining layer and the spacer layers.
    Type: Application
    Filed: January 26, 2024
    Publication date: May 16, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsin-Yen HUANG, Ting-Ya LO, Shao-Kuan LEE, Chi-Lin TENG, Cheng-Chin LEE, Shau-Lin SHUE, Hsiao-Kang CHANG
  • Publication number: 20240160106
    Abstract: A lithography method in semiconductor fabrication is provided. The method includes generating a plurality of first drops of a target material through a first nozzle group selected from a plurality of nozzles to form a first elongated droplet; generating a first laser pulse to convert the first elongated droplet into plasma that generates a first extreme ultraviolet (EUV) radiation; reflecting the first EUV radiation by a collector mirror having an optical axis; generating a plurality of second drops of the target material through a second nozzle group selected from the plurality of nozzles to form a second elongated droplet, the second elongated droplet being oblique with the optical axis of the collector mirror at a different angle than the first elongated droplet.
    Type: Application
    Filed: January 24, 2024
    Publication date: May 16, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Hung LIAO, Yueh-Lin YANG
  • Publication number: 20240157412
    Abstract: The present disclosure relates to an apparatus and a method for wafer cleaning. The apparatus can include a wafer holder configured to hold a wafer; a cleaning nozzle configured to dispense a cleaning fluid onto a first surface (e.g., front surface) of the wafer; and a cleaning brush configured to clean a second surface (e.g., back surface) of the wafer. Using the cleaning fluid, the cleaning brush can clean the second surface of the wafer with a scrubbing motion and ultrasonic vibration.
    Type: Application
    Filed: January 26, 2024
    Publication date: May 16, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo Chen CHEN, Sheng-Wei Wu, Yung-Li Tsai
  • Patent number: 11980864
    Abstract: A method of operating an integrated circuit includes using a first switching device to couple a bio-sensing device to a first signal path, generating, using the bio-sensing device, a bio-sensing signal on the first signal path in response to an electrical characteristic of a sensing film, using a second switching device to couple a temperature-sensing device to a second signal path, and generating, using the temperature-sensing device, a temperature-sensing signal on the second signal path in response to a temperature of the sensing film. The first and second switching devices, the bio-sensing device, the temperature-sensing device, and the sensing film are components of a sensing pixel of a plurality of sensing pixels of the integrated circuit.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Tung-Tsun Chen, Yi-Shao Liu, Jui-Cheng Huang, Chin-Hua Wen, Felix Ying-Kit Tsui, Yung-Chow Peng
  • Patent number: 11983113
    Abstract: A memory device is described, including a command decoder configured to receive a copy command to copy data stored in a first memory location to a second memory location without transmitting the data to an external controller, a memory array electrically connected to the command decoder and including a plurality of memory locations including the first memory location and the second memory location, a data line electrically connected to the memory array and configured to receive, from the first memory location, the data to be transmitted to the second memory location through the same data line, and an output buffer configured to store the data received from the first memory location through the data line to be written into the second memory location without transmitting the data to the external controller.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: May 14, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Shih-Lien Linus Lu
  • Patent number: 11984323
    Abstract: A chemical mechanical planarization (CMP) system including a capacitive deionization module (CDM) for removing ions from a solution and a method for using the same are disclosed. In an embodiment, an apparatus includes a planarization unit for planarizing a wafer; a cleaning unit for cleaning the wafer; a wafer transportation unit for transporting the wafer between the planarization unit and the cleaning unit; and a capacitive deionization module for removing ions from a solution used in at least one of the planarization unit or the cleaning unit.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Chien Hou, Yu-Ting Yen, Cheng-Yu Kuo, Chih Hung Chen, William Weilun Hong, Kei-Wei Chen
  • Patent number: 11984261
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a dielectric structure sandwiched between a first electrode and a bottom electrode. A passivation layer overlies the second electrode and the dielectric structure. The passivation layer comprises a horizontal surface vertically below a top surface of the passivation layer. The horizontal surface is disposed above a top surface of the dielectric structure.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: May 14, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Anderson Lin, Chun-Ren Cheng, Chi-Yuan Shih, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Fu-Chun Huang, Fan Hu, Ching-Hui Lin, Yan-Jie Liao