Patents Assigned to Taiwan TFT LCD Association
  • Patent number: 7390715
    Abstract: A method of fabricating an active layer thin film by a metal-chalcogenide precursor solution is provided, including the steps of: synthesizing a metal-chalcogenide precursor containing benzyl or benzyl derivative; dissolving the precursor in a solvent to produce a precursor solution, wherein a chalcogen element or compound can be added to the precursor solution to adjust the molar ratio of metal ion to chalcogen; and then applying the precursor solution onto a substrate in a specific coating manner, to form a film of the metal-chalcogenide after a curing process. Thereby, the existing method wherein an amorphous silicon active layer film is fabricated by plasma enhanced chemical vapor deposition (PECVD) is replaced.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: June 24, 2008
    Assignees: Taiwan TFT LCD Association, Chunghwa Picture Tubes, Ltd., Au Optronics Corp., Quanta Display Inc., Hannstar Display Corp., Chi Mei Optoelectronics Corp., Industrial Technology Research Institute, Toppoly Optoelectronics Corp.
    Inventors: Chun-Yao Ou, Hua-Chi Cheng, Ming-Nan Hsiao, Bor-Chuan Chuang, Chao-Jen Wang
  • Publication number: 20080129928
    Abstract: An optical film including a substrate having an aligned surface or an alignment layer thereon, a first liquid crystal layer disposed on the aligned surface of the substrate or a surface of the alignment layer, and a second liquid crystal layer disposed on a surface of the first liquid crystal layer to form a multi-layer including the first and the second liquid crystal layers is provided. A method of manufacturing the optical film is also provided, including providing a substrate; performing an alignment treatment on the surface thereof or forming an alignment layer thereon; coating a first liquid crystal layer on the aligned surface of the substrate or the surface of the alignment layer; performing a first curing step; coating a second alignment layer on a surface of the first liquid crystal layer; and performing a second curing step to form a multi-layer including the aforesaid liquid crystal layers.
    Type: Application
    Filed: February 9, 2007
    Publication date: June 5, 2008
    Applicants: TAIWAN TFT LCD ASSOCIATION, CHUNGHWA PICTURE TUBES, LTD., AU OPTRONICS CORPORATION, HANNSTAR DISPLAY CORPORATION, CHI MEI OPTOELECTRONICS CORPORATION, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TPO DISPLAYS CORP.
    Inventor: Yue-Shih Jeng
  • Publication number: 20080099916
    Abstract: A bonding structure including a first substrate, a second substrate, a non-conductive adhesive layer, and ball-shaped spacers is provided. The first substrate has first bonding pads. The second substrate is disposed on one side of the first substrate, and includes second bonding pads and compliant bumps disposed on the second bonding pads, respectively. The second bonding pads on the second substrate are electrically connected to the first bonding pads on the first substrate through the compliant bumps, respectively. The non-conductive adhesive layer is sandwiched between the first substrate and the second substrate. The ball-shaped spacers are distributed in the non-conductive adhesive layer to maintain the gap between the first and second substrates.
    Type: Application
    Filed: January 31, 2007
    Publication date: May 1, 2008
    Applicants: TAIWAN TFT LCD ASSOCIATION, CHUNGHWA PICTURE TUBES, LTD., AU OPTRONICS CORPORATION, HANNSTAR DISPLAY CORPORATION, CHI MEI OPTOELECTRONICS CORPORATION, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TPO DISPLAYS CORP.
    Inventors: Shyh-Ming Chang, Sheng-Shu Yang
  • Publication number: 20080067148
    Abstract: An etchant for patterning composite layer containing copper is provided. The etchant includes peracetic acid being about 5% to 40% by weight and serving as a major component, a peracetic acid stabilizer being about 5% to 15% by weight, an organic acid being about 5% to 10% by weight, an inorganic acid being about 5% to 15% by weight, a salt being about 8% to 15% by weight, which are based on the total weight of the etchant.
    Type: Application
    Filed: February 2, 2007
    Publication date: March 20, 2008
    Applicants: TAIWAN TFT LCD ASSOCIATION, CHUNGHWA PICTURE TUBES, LTD., AU OPTRONICS CORPORATION, HANNSTAR DISPLAY CORPORATION, CHI MEI OPTOELECTRONICS CORPORATION, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TPO DISPLAYS CORP.
    Inventors: Sai-Chang Liu, Cheng-Tzu Yang, Chien-Wei Wu, Shuo-Wei Liang
  • Publication number: 20080062354
    Abstract: A liquid crystal display (LCD) panel and a fabricating method thereof are described. First, a first substrate and a second substrate are provided. A liquid crystal monomer layer is then formed on the surface of at least one of the first and second substrates. Next, a curing step is performed to the liquid crystal monomer layer to induce a polymerization reaction, so as to form a liquid crystal polymer layer. Thereafter, the first and second substrates are assembled and a liquid crystal layer is filled between the first and second substrates.
    Type: Application
    Filed: February 2, 2007
    Publication date: March 13, 2008
    Applicants: TAIWAN TFT LCD ASSOCIATION, CHUNGHWA PICTURE TUBES, LTD., AU OPTRONICS CORPORATION, HANNSTAR DISPLAY CORPORATION, CHI MEI OPTOELECTRONICS CORPORATION, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TPO DISPLAYS CORP.
    Inventors: Tsan-Yu Ho, Ding-Jen Chen, Hsin-Chun Chiang, Mei-Ju Lee, Bang-Hao Wu
  • Publication number: 20080057631
    Abstract: A manufacturing method of an active layer of a thin film transistor is provided. The method includes following steps. First a substrate is provided, and a semiconductor precursor solution is then prepared through a liquid process. Thereafter, the semiconductor precursor solution is provided on the substrate to form a semiconductor precursor thin film. After that, a light source is used to irradiate the semiconductor precursor thin film to remove residual solvent and allow the semiconductor precursor thin film to produce semiconductor property, so as to form a semiconductor active layer.
    Type: Application
    Filed: December 22, 2006
    Publication date: March 6, 2008
    Applicants: TAIWAN TFT LCD ASSOCIATION, CHUNGHWA PICTURE TUBES, LTD., AU OPTRONICS CORPORATION, HANNSTAR DISPLAY CORPORATION, CHI MEI OPTOELECTRONICS CORPORATION, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TPO DISPLAYS CORP.
    Inventors: Hsiang-Yuan Cheng, Shin-Chuan Chiang, Shih-Hsiang Lai, Chin-Chih Yu, Bor-Chuan Chuang
  • Publication number: 20080057202
    Abstract: A method of fabricating of a metal line by a wet process is provided. A catalytic adhesive layer is formed on an insulating substrate. A fist metal layer is formed by an electoless plating process, and then, a second metal layer is formed by an electoless plating process or an electoplating process. The first and the second metal layers are patterned to form a metal line.
    Type: Application
    Filed: November 21, 2006
    Publication date: March 6, 2008
    Applicants: TAIWAN TFT LCD ASSOCIATION, CHUNGHWA PICTURE TUBES, LTD., AU OPTRONICS CORPORATION, HANNSTAR DISPLAY CORPORATION, CHI MEI OPTOELECTRONICS CORPORATION, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TPO DISPLAYS CORP.
    Inventors: CHIEN-WEI WU, SHUO-WEI LIANG, WAN-CHI CHEN, CHENG-TZU YANG, SAI-CHANG LIU, PO-CHIU CHEN, MIN-CHUAN WANG, YUNG-CHIA KUAN
  • Publication number: 20080023832
    Abstract: A contact structure including a contact pad, a polymer bump and a conductive layer is provided in the present invention. The contact pad is disposed on a substrate. The polymer bump is disposed on the contact pad. The conductive layer covers the polymer bump and extends to the outside of the polymer bump. The portion of the conductive layer extending to the outside of the polymer bump serves as a test pad. The invention further discloses a manufacturing method of a contact structure. First, a substrate is provided having a contact pad already formed thereon. Then, a polymer bump is formed on the contact pad and a conductive layer is formed on the polymer bump. The conductive layer covers the polymer bump and extends to the outside of the polymer bump. The portion of the conductive layer extending to the outside of the polymer bump serves as a test pad.
    Type: Application
    Filed: June 13, 2007
    Publication date: January 31, 2008
    Applicants: TAIWAN TFT LCD ASSOCIATION, CHUNGHWA PICTURE TUBES, LTD., AU OPTRONICS CORPORATION, HANNSTAR DISPLAY CORPORATION, CHI MEI OPTOELECTRONICS CORPORATION, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TPO DISPLAYS CORP.
    Inventor: Shyh-Ming Chang
  • Publication number: 20080023830
    Abstract: A contact structure having both a compliant bump and a testing area and a manufacturing method for the same is introduced. The compliant bump is formed on a conductive contact of the silicon wafer or a printed circuit board. The core of the bump is made of polymeric material, and coated with a conductive material. In particular, the compliant bump is disposed on the one side of the conductive contact structure that includes both the bump and the testing area, wherein the testing area allows the area to be functionality tested, so as to prevent damage of the coated conductive material over the compliant bump during a probe testing.
    Type: Application
    Filed: November 24, 2006
    Publication date: January 31, 2008
    Applicants: TAIWAN TFT LCD ASSOCIATION, CHUNGHWA PICTURE TUBES, LTD., AU OPTRONICS CORP., QUANTA DISPLAY INC., HANNSTAR DISPLAY CORP., CHI MEI OPTOELECTRONICS CORP., INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TOPPOLY OPTOELECTRONICS CORP.
    Inventors: Shyh-Ming Chang, Sheng-Shu Yang, Chao-Chyun An
  • Publication number: 20070263151
    Abstract: A method to control the pretilt angle of a liquid crystal device is disclosed. The claimed invention provides two substrates and at least one vertical alignment layers, which are fabricated on one side of each substrate and are opposite to each other. Moreover, a liquid crystal layer is sandwiched between the alignment layers, and the preferred embodiment of the liquid crystal device has an Optically Compensated Birefrigence (OCB) configuration. More particularly, before the process of alignment for the liquid crystal device is performed, a pretilt angle disclosed in the present invention is adjusted since at least one vertical alignment layer is treated with a particle beam generated by plasma or ions. The pretilt angle can range between 5 and 85 degrees.
    Type: Application
    Filed: September 14, 2006
    Publication date: November 15, 2007
    Applicants: TAIWAN TFT LCD ASSOCIATION, CHUNGHWA PICTURE TUBES, LTD., AU OPTRONICS CORP., QUANTA DISPLAY INC., HANNSTAR DISPLAY CORP., CHI MEI OPTOELECTRONICS CORP., INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TOPOLY OPTOELECTRONICS CORP.
    Inventors: Ching-Wen Hsiao, Bang-Hao Wu, Hsin-Chun Chiang, Yu-Ming Chen
  • Patent number: 7045817
    Abstract: The invention provides a TFT electrode structure and its manufacturing method that can prevent metal diffusion occurring in the fabrication of a TFT, and thereby reduce the risk of contamination of the chemical vapor deposition process due to metallic ion diffusion. The transparent pixel electrode is formed after the gate electrode metal so that the pixel transparent electrode can be used as a barrier layer to prevent metal diffusion under high temperature from the gate electrode metal to adjacent insulating layers or the active layer. Further, the method used to form the transparent pixel electrode is a low-temperature physical vapor deposition process, which affected less by the processing environment, and the transparent pixel electrode is a conductive layer that is not affected by metal diffusion.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: May 16, 2006
    Assignees: Taiwan TFT LCD Association, Chunghwa Picture Tubes, Ltd., Au Optronics Corp, Quanta Display Inc., Hannstar Display Corp, Chi Mei Optoelectronics Corp., Industrial Technology Research Institute, Toppoly Optoelectronics Corp.
    Inventors: Cheng-Chung Chen, Yu-Chang Sun, Yi-Hsun Huang, Chien-Wei Wu, Shuo-Wei Liang, Chia-Hsiang Chen, Chi-Shen Lee, Chai-Yuan Sheu, Yu-Chi Lee, Te-Ming Chu, Cheng-Hsing Chen