Patents Assigned to Technology Innovations, LLC
  • Patent number: 7718710
    Abstract: A method for manufacturing stable concentrated colloids containing metal nanoparticles in which the colloid is stabilized by adding a base. This allows the metal particles to be formed in higher concentration without forming larger agglomerates and/or precipitating. The method of manufacturing the stable colloidal metal nanoparticles of the present invention generally includes (i) providing a solution comprising a plurality of metal atoms, (ii) providing a solution comprising a plurality of organic agent molecules, each organic agent molecule comprising at least one functional group capable of bonding to the metal atoms, (iii) reacting the metal atoms in solution with the organic agent molecules in solution to form a mixture comprising a plurality of complexed metal atoms, (iv) reducing the complexed metal atoms in the mixture using a reducing agent to form a plurality of nanoparticles, and (v) adding an amount of a base to the mixture, thereby improving the stability of the nanoparticles in the mixture.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 18, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Cheng Zhang, Sukesh Parasher, Michael A. Rueter, Bing Zhou
  • Patent number: 7718156
    Abstract: Carbon nanostructures are formed from a carbon precursor and catalytic templating nanoparticles. Methods for manufacturing carbon nanostructures generally include (1) forming a precursor mixture that includes a carbon precursor and a plurality of catalytic templating particles, (2) carbonizing the precursor mixture to form an intermediate carbon material including carbon nanostructures, amorphous carbon, and catalytic metal, (3) purifying the intermediate carbon material by removing at least a portion of the amorphous carbon and optionally at least a portion of the catalytic metal, and (4) heat treating the purified intermediate carbon material and/or treating the purified intermediate carbon material with a base to remove functional groups on the surface thereof. The removal of functional groups increases the graphitic content of the carbon nanomaterial and decreases its hydrophilicity.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: May 18, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Cheng Zhang, Martin Fransson, Bing Zhou
  • Patent number: 7709541
    Abstract: An improved skeletal iron catalyst is provided for use in Fischer-Tropsch synthesis reactions for converting CO and H2 to hydrocarbon products. The skeletal iron catalyst is manufactured using iron and a removable non-ferrous component such as aluminum. The iron and removable non-ferrous component are mixed together to form a precursor catalyst and then a portion of the removable non-ferrous component is removed to leave a skeletal iron catalyst. One or more first promoter metals and optionally one or more second promoter metals are incorporated into the skeletal iron catalyst either by blending the promoter into the precursor catalyst during the formation thereof or by depositing the promoter on the skeletal iron. The first promoter metals comprises a metal selected from the group consisting of titanium, zirconium, vanadium, cobalt, molybdenum, tungsten, and platinum-group metals.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: May 4, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Yijun Lu, Zhihua Wu, Zhenhua Zhou, Bing Zhou
  • Patent number: 7709411
    Abstract: Multicomponent nanoparticles include two or more dissimilar components selected from different members of the group of noble metals, base transition metals, alkali earth metals, and rare earth metals and/or different groups of the periodic table of elements. The two or more dissimilar components are dispersed using a polyfunctional dispersing agent such that the multicomponent nanoparticles have a substantially uniform distribution of the two or more dissimilar components. The polyfunctional dispersing agent may include organic molecules, polymers, oligomers, or salts of these. The molecules of the dispersing agent bind to the dissimilar components to overcome same-component attraction, thereby allowing the dissimilar components to form multicomponent nanoparticles. Dissimilar components such as iron and platinum can be alloyed together using the dispersing agent to form substantially uniform multicomponent nanoparticles, which can be used alone or with a support.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: May 4, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Sukesh Parasher, Michael Rueter
  • Publication number: 20100094070
    Abstract: Bimetallic, supported catalysts for production of 1-hexene from ethylene are manufactured by impregnating a porous, solid support material with at least one catalytic chromium compound and at least one catalytic tantalum compound. The bimetallic, supported catalysts have high catalytic turnover, high selectivity for 1-hexene production, a low tendency for metals to leach from the catalysts during manufacturing and use compared to catalysts manufactured using known techniques. Moreover, the catalysts can be reused in multiple synthesis runs. High turnover, high selectivity, and reusability improve yields and reduce the costs associated with producing 1-hexene from ethylene, while the absence of metal leaching reduces the potential environmental impacts of using toxic metal catalysts (e.g., chromium).
    Type: Application
    Filed: October 15, 2008
    Publication date: April 15, 2010
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: He Qiu, Bing Zhou
  • Publication number: 20100092370
    Abstract: Powdered, amorphous carbon nanomaterials are formed from a carbon precursor in reverse microemulsion that includes organic solvent, surfactant and water. Methods for manufacturing amorphous, powdered carbon nanomaterials generally include steps of (1) forming a reverse microemulsion including at least one non-polar solvent, at least one surfactant, and at least one polar solvent, (2) adding at least one carbon precursor substance to the reverse microemulsion, (3) reacting the at least one carbon precursor substance so as to form an intermediate carbon nanomaterial, (4) separating the intermediate amorphous carbon nanomaterial from the reverse microemulsion, and (5) heating the intermediate amorphous carbon nanomaterial for a period of time so as to yield an amorphous, powdered carbon nanomaterial.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 15, 2010
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Cheng Zhang, Bing Zhou
  • Patent number: 7687601
    Abstract: Conductive polymers are purified using a solid scavenger. The solid scavengers include metal-scavenging functional groups linked to the surface of a particle support material. To improve the functionalization of the support material, the support materials are first treated with sulfuric acid or nitric acid before attaching the molecules containing the metal-scavenging functional groups. The solid scavengers used in the purification methods are more efficient at removing impurities in conductive polymers than existing scavengers.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: March 30, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Changkun Liu, Bing Zhou
  • Patent number: 7686986
    Abstract: Magnesium hydroxide nanoparticles are made from a magnesium compound that is reacted with an organic dispersing agent (e.g., a hydroxy acid) to form an intermediate magnesium compound. Magnesium hydroxide nanoparticles are formed from hydrolysis of the intermediate compound. The bonding between the organic dispersing agent and the magnesium during hydrolysis influences the size of the magnesium hydroxide nanoparticles formed therefrom. The magnesium hydroxide nanoparticles can be treated with an aliphatic compound (e.g., a monofunctional alcohol) to prevent aggregation of the nanoparticles during drying and/or to make the nanoparticles hydrophobic such that they can be evenly dispersed in a polymeric material. The magnesium hydroxide nanoparticles exhibit superior fire retarding properties in polymeric materials compared to known magnesium hydroxide particles.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: March 30, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Zhenhua Zhou, Zhihua Wu, Bing Zhou
  • Publication number: 20100051507
    Abstract: Hydrocarbon-soluble molybdenum catalyst precursors include a plurality of molybdenum cations that are each bonded with a plurality of organic anions to form an oil soluble molybdenum salt. A portion of the molybdenum atoms are in the 3+ oxidation state such that the plurality of molybdenum atoms has an average oxidation state of less than 4+, e.g., less than about 3.8+, especially less than about 3.5+. The catalyst precursors can form a hydroprocessing molybdenum sulfide catalyst in heavy oil feedstocks. The oil soluble molybdenum salts are manufactured in the presence of a reducing agent, such as hydrogen gas, to obtain the molybdenum in the desired oxidation state. Preferably the reaction is performed with hydrogen or an organic reducing agent and at a temperature such that the molybdenum atoms are reduced to eliminate substantially all molybdenum oxide species.
    Type: Application
    Filed: November 11, 2009
    Publication date: March 4, 2010
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: ZHIHUA WU, Zhenhua Zhou, Bing Zhou
  • Patent number: 7670588
    Abstract: Hydrogen is stored by adsorbing the hydrogen to a carbon nanomaterial that includes carbon nanospheres. The carbon nanospheres are multi-walled, hollow carbon nanostructures with a maximum diameter in a range from about 10 nm to about 200 nm. The nanospheres have an irregular outer surface and an aspect ratio of less than 3:1. The carbon nanospheres can store hydrogen in quantities of at least 1.0% by weight.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: March 2, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Cheng Zhang
  • Patent number: 7670984
    Abstract: Hydrocarbon-soluble molybdenum catalyst precursors include a plurality of molybdenum cations that are each bonded with a plurality of organic anions to form an oil soluble molybdenum salt. A portion of the molybdenum atoms are in the 3+ oxidation state such that the plurality of molybdenum atoms has an average oxidation state of less than 4+, e.g., less than about 3.8+, especially less than about 3.5+. The catalyst precursors can form a hydroprocessing molybdenum sulfide catalyst in heavy oil feedstocks. The oil soluble molybdenum salts are manufactured in the presence of a reducing agent, such as hydrogen gas, to obtain the molybdenum in the desired oxidation state. Preferably the reaction is performed with hydrogen or an organic reducing agent and at a temperature such that the molybdenum atoms are reduced to eliminate substantially all molybdenum oxide species.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: March 2, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Zhihua Wu, Zhenhua Zhou, Bing Zhou
  • Patent number: 7666915
    Abstract: The particle sizes of agglomerates of carbon nanospheres are reduced by dispersing the carbon nanospheres in a polar solvent. The carbon nanospheres are multi-walled, hollow, graphitic structures with an average diameter in a range from about 10 nm to about 200 nm, more preferably about 20 nm to about 100 nm. Spectral data shows that prior to being dispersed, the carbon nanospheres are agglomerated into clusters that range in size from 500 nm to 5 microns. The clusters of nanospheres are reduced in size by dispersing the carbon nanospheres in the polar solvent (e.g., water) using a surface modifying agent (e.g., glucose) and ultrasonication. The combination of polar solvent, surface modifying agent, and ultrasonication breaks up and disperses agglomerates of carbon nanospheres.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: February 23, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Cheng Zhang, Bing Zhou
  • Publication number: 20100038263
    Abstract: Hydrogen is stored by adsorbing the hydrogen to a carbon nanomaterial that includes carbon nanospheres. The carbon nanospheres are multi-walled, hollow carbon nanostructures with a maximum diameter in a range from about 10 nm to about 200 nm. The nanospheres have an irregular outer surface with graphitic defects and an aspect ratio of less than 3:1. The carbon nanospheres can store hydrogen in quantities of at least 1.0% by weight.
    Type: Application
    Filed: October 22, 2009
    Publication date: February 18, 2010
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Bing Zhou, Cheng Zhang
  • Patent number: 7655137
    Abstract: The reforming catalysts include a halogen promoter and a plurality of nanocatalyst particles supported on a support material. The nanocatalyst particles have a controlled crystal face exposure of predominately (110). The controlled coordination structure is manufactured by reacting a plurality of catalyst atoms with a control agent such as polyacrylic acid and causing or allowing the catalyst atoms to form nanocatalyst particles. The catalysts are used in a reforming reaction to improve the octane number of gasoline feedstock. The reforming catalysts show improved C5+ hydrocarbon production and improved octane barrel number increases as compared to commercially available reforming catalysts.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 2, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Horacio Trevino, Zhihua Wu
  • Publication number: 20090308792
    Abstract: Oil soluble catalysts are used in a process to hydrodesulfurize petroleum feedstock having a high concentration of sulfur-containing compounds and convert the feedstock to a higher value product. The catalyst complex includes at least one attractor species and at least one catalytic metal that are bonded to a plurality of organic ligands that make the catalyst complex oil-soluble. The attractor species selectively attracts the catalyst to sulfur sites in sulfur-containing compounds in the feedstock where the catalytic metal can catalyze the removal of sulfur. Because the attractor species selectively attracts the catalysts to sulfur sites, non-productive, hydrogen consuming side reactions are reduced and greater rates of hydrodesulfurization are achieved while consuming less hydrogen per unit sulfur removed.
    Type: Application
    Filed: June 17, 2008
    Publication date: December 17, 2009
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Zhihua Wu, Zhenhua Zhou, Bing Zhou
  • Patent number: 7632773
    Abstract: Supported catalysts are manufactured from a pretreated porous support material and a nanocatalyst solution of catalyst nanoparticles. The porous support material is pre-treated with a gaseous solvent (e.g., steam or alcohol) to protect the support material from cracking during impregnation of the nanocatalyst solution. The supported catalysts have more uniform size, lower attrition of metals during manufacturing and use, and improved distributions of metal loading compared to catalysts manufactured using known techniques. Hydrogen peroxide manufactured from such catalysts is less likely to be contaminated with catalyst metal.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: December 15, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Zhenhua Zhou, Zhihua Wu, Bing Zhou
  • Patent number: 7632774
    Abstract: Supported catalysts include an inorganic solid support such as silica that is functionalized to have inorganic acid functional groups attached thereto. The functionalization of the support material is optimized by (i) limiting the amount of water present during the functionalization reaction, (ii) using a concentrated mineral acid or derivative thereof, and/or (iii) increasing the reaction temperature and/or reaction pressure. The acid-functionalized support material serves as a support for a metal nanoparticle catalyst. The nanocatalyst particles are preferably bonded to the support material through an organic molecule, oligomer, or polymer having functional groups that can bind to both the nanocatalyst particles and to the support material. The supported catalysts can advantageously be used for the direct synthesis of hydrogen peroxide from hydrogen and oxygen feed streams.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: December 15, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Michael A. Rueter, Sukesh Parasher, Cheng Zhang, Bing Zhou
  • Patent number: 7632775
    Abstract: Disclosed are nanoparticles formed from a plurality of two or more different components. The two or more components are dispersed using a dispersing agent such that the nanoparticles have a substantially uniform distribution of the two or more components. The dispersing agents can be poly functional small organic molecules, polymers, or oligomers, or salts of these. The molecules of the dispersing agent bind to the particle atoms to overcome like-component attractions, thereby allowing different and/or dissimilar components to form heterogeneous nanoparticles. In one embodiment, dissimilar components such as iron and platinum are complexed using the dispersing agent to form substantially uniform heterogeneous nanoparticles. Methods are also disclosed for making the multicomponent nanoparticles. The methods include forming suspensions of two or more components complexed with the dispersing agent molecules. The suspensions can also be deposited on a support material and/or anchored to the support.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: December 15, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Sukesh Parasher, Michael Rueter
  • Publication number: 20090298684
    Abstract: Multicomponent nanoparticles include two or more dissimilar components selected from different members of the group of noble metals, base transition metals, alkali earth metals, and rare earth metals and/or different groups of the periodic table of elements. The two or more dissimilar components are dispersed using a polyfunctional dispersing agent such that the multicomponent nanoparticles have a substantially uniform distribution of the two or more dissimilar components. The polyfunctional dispersing agent may include organic molecules, polymers, oligomers, or salts of these. The molecules of the dispersing agent bind to the dissimilar components to overcome same-component attraction, thereby allowing the dissimilar components to form multicomponent nanoparticles. Dissimilar components such as iron and platinum can be alloyed together using the dispersing agent to form substantially uniform multicomponent nanoparticles, which can be used alone or with a support.
    Type: Application
    Filed: April 9, 2009
    Publication date: December 3, 2009
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Bing Zhou, Sukesh Parasher, Michael Rueter
  • Patent number: 7615142
    Abstract: An expanded bed hydroprocessing system and related method includes at least one expanded bed reactor that employs a solid catalyst to catalyze hydroprocessing reactions involving hydrogen and a high molecular weight hydrocarbon feedstock (e.g., a Fischer-Tropsch wax) that is contaminated with solid particulates. Hydroprocessing the high molecular weight hydrocarbon feedstock in an expanded bed reactor results in formation of a hydroprocessed material from the hydrocarbon feedstock, while eliminating the risk of plugging of the supported catalyst bed by the solid particulates as compared to a reactor including a stationary catalyst bed.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 10, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Lap-Keung Lee, Lawrence M. Abrams