Abstract: Using a standardized cell containing a thin layer of an aligned nematic liquid crystalline material, a relationship is determined between concentration of an optically active solute material in the liquid crystal layer and line spacing in a pattern produced by differential light refraction, upon the injection of different amounts of the optically active compound. Subsequently, quantitative analysis of a sample containing the optically active compound is accomplished by injecting a known amount of the sample into a second identical standardized cell, observing the line spacing of refracted light in the second cell and comparing it to the relationship determined in the first cell. Optically active compounds analyzable in this manner include steroids and cholesteryl esters. A preferred nematic liquid crystalline material is n-p-methoxybenzylidene-p-n-butylaniline.
Abstract: A composition and method for the oxidation of organic contaminants in waste water by subjection to heterogeneous photosensitized oxidation is disclosed.
Abstract: In a finely dispersed emulsion of a water immiscible solution of an organic polyfunctional Lewis base and an aqueous solution of a partially hydrophilic, partially lipophilic polyfunctional Lewis acid, a reaction occurs at the phase interface to produce a novel microparticulate material comprised of the reaction product of the Lewis acid and the Lewis base. The maximum particle size dimensions of the microparticulate material depends on the degree of dispersion in the emulsified reaction mixture and may be as low as 2 microns or smaller.
Abstract: Nematic liquid crystal compositions including a relatively small amount of a charge-transfer acceptor dopant exhibit substantially different voltage-transmission characteristics in dynamic scattering as compared to undoped nematic liquids. Nematic compositions based on azoxy compounds and dopants of the cyano or halo tetra substituted quinone types are preferred.