Patents Assigned to Texas A&M
  • Publication number: 20200378744
    Abstract: A circuit for generating a swept source optical coherence tomography (SS-OCT) imaging calibration clock. The circuit comprises a first photodetector configured to convert an SS-OCT optical calibration signal to an SS-OCT electrical calibration signal, a first analog-to-digital converter (ADC) coupled to the first photodetector and configured to convert the SS-OCT electrical calibration signal to a sequence of SS-OCT calibration signal digital values, a processing unit coupled to the first ADC that, when initiated, is configured to demodulate the sequence of SS-OCT calibration signal digital values to obtain a sequence of SS-OCT wave number digital values, where each SS-OCT wave number digital value corresponds to one of the SS-OCT calibration signal digital values, and a level crossing sampler that is configured to track a wave number associated with the SS-OCT optical calibration signal and to generate an SS-OCT calibration clock pulse.
    Type: Application
    Filed: April 25, 2018
    Publication date: December 3, 2020
    Applicant: The Texas A&M University System
    Inventors: Sebastian Hoyos, Oscar Joseu Pacheco Barajas, Amir Tofighi Zavareh
  • Patent number: 10851503
    Abstract: An end treatment for a guardrail safety system includes a terminal portion of a guardrail beam comprising a downstream end and upstream end, a first tension cable coupled to an upstream end of the terminal portion. An extruder configured to receive at least a portion of the guardrail beam and at least a portion of the first tension cable, and a terminal support post installed adjacent the roadway at an upstream end of the terminal portion of the guardrail beam. The extruder includes a narrowing throat providing a channel in which at least a portion of the guardrail beam is disposed. The narrowing throat is configured to flatten the guardrail beam in response to a collision with a vehicle moving the extruder in a downstream direction along the guardrail beam. The terminal support post coupled to an upstream end of the first tension cable.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: December 1, 2020
    Assignee: The Texas A&M University System
    Inventors: Dean C. Alberson, D. Lance Bullard, Jr., C. Eugene Buth, Roger P. Bligh, Akram Y. Abu-Odeh
  • Publication number: 20200360929
    Abstract: An automated fully integrated on-chip ultra-high-throughput droplet microfluidic screening platform (PolyChip) has been developed that integrates the cultivation and manipulation of cells (e.g., microbial) communities with “on the fly” sorting and analyses. The PolyChip system enables continuous operation of the entire process, from cell-encapsulated droplet generation, culture, merging with other cell-encapsulated droplets, culture, merging with reagent-laden droplets, culture, followed by detection and sorting.
    Type: Application
    Filed: January 25, 2019
    Publication date: November 19, 2020
    Applicant: The Texas A&M University System
    Inventors: Adrian R. Guzman, Arum Han, Paul J. de Figueiredo
  • Patent number: 10836809
    Abstract: The present invention describes compositions and methods for priming protective immunity in the presence of pre-existing maternal antibody. In some embodiments, the invention contemplates simultaneously masking vaccines to avoid antibody neutralization while targeting those vaccines to specific cell types in order to elicit an enhanced immune response. In other embodiments, vectors that recruit and activate specific antigen-presenting cells may further enhance the efficacy of those immune responses.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: November 17, 2020
    Assignee: The Texas A&M University System
    Inventors: Waithaka Mwangi, Surya Waghela, Luc Berghman
  • Patent number: 10838419
    Abstract: A payload platform includes a platform and a castor assembly coupled to the platform. The castor assembly includes a body, a first wheel coupled to the body, and a second wheel coupled to the body. The first wheel and the second wheel are individually actuatable. A sensor is coupled to the body. A control unit is operably coupled to the sensor and operably coupled to the first wheel and to the second wheel. The sensor detects an area surrounding the platform, determines presence of obstacles, and transmits a signal to the control unit corresponding to the area surrounding the platform. The control unit directs the first wheel and the second wheel to rotate in a prescribed manner so as to achieve a prescribed movement of the platform.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: November 17, 2020
    Assignee: The Texas A&M University System
    Inventors: John L. Junkins, Manoranjan Majji, Jeremy Davis, James Doebbler
  • Publication number: 20200353203
    Abstract: A therapeutic device comprises a sensor positioned proximate to a user and configured to receive a plurality of signals, and a processor coupled to the sensor and configured to determine a biomarker describing a biological characteristic of the user based on the plurality of signals, and determine whether the user is likely to experience an impending sleep disorder episode within a predetermined period of time based on the biomarker.
    Type: Application
    Filed: December 7, 2018
    Publication date: November 12, 2020
    Applicant: The Texas A&M University System
    Inventors: Satish Bukkapatnam, Kahkashan Afrin, Vu Nguyen
  • Patent number: 10828393
    Abstract: Disclosed are compositions, methods and processes for fabricating and using a device or other implement including a surface or surfaces having a nanoscale or microscale layer or coating of Si—O—N—P. These coatings and/or layers may be continuous, on the surface or discontinuous (e.g., patterned, grooved), and may be provided on silica surfaces, metal (e.g., titanium), ceramic, and combination/hybrid materials. Methods of producing an implantable device, such as a load-bearing or non-load-bearing device, such as a bone or other structural implant device (load-bearing), are also presented. Craniofacial, osteogenic and disordered bone regeneration (osteoporosis) uses and applications of devices that include at least one surface that is treated to include a nanoscale or microscale layer or coating of Si—O—N—P are also provided. Methods of using the treated and/or coated devices to enhance enhanced vascularization and healing at a treated surface of a device in vivo, is also presented.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: November 10, 2020
    Assignees: The Texas A&M University System, Board of Regents, The University of Texas System
    Inventors: Venu Varanasi, Pranesh Aswath, Philip Kramer, Megen Velten, Azhar Ilyas
  • Patent number: 10813991
    Abstract: The present disclosure provides a recombinant viral vector comprising at least one transgene inserted into a Marek's disease viral genome for treatment of diseases in poultry. Also provided are immunogenic compositions comprising such recombinant viral vectors and methods for preventing or inhibiting Marek's disease in combination with at least a second disease in poultry.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: October 27, 2020
    Assignee: The Texas A&M University System
    Inventors: Sanjay M. Reddy, Blanca M. Lupiani
  • Publication number: 20200324892
    Abstract: A flapping-wing aircraft includes a support frame, a motor coupled to the support frame, a pair of wings coupled to the support frame, and a linkage assembly coupled to the support frame and configured to translate an output torque of the motor into flapping motion of the wings, wherein the linkage assembly includes a first link coupled to a rotational output of the motor, a second link pivotably coupled to the first link at a first pivot joint, a third link pivotably coupled to the second link at a second pivot joint, and a fourth link pivotably coupled to the support frame and slidably coupled to the third link, and wherein the fourth link is coupled to a first wing of the pair of wings.
    Type: Application
    Filed: December 20, 2018
    Publication date: October 15, 2020
    Applicant: The Texas A&M University System
    Inventors: Moble Benedict, David A. Coleman
  • Patent number: 10786465
    Abstract: A composition comprising a nanoparticle, wherein the nanoparticle comprises a polymer/copolymer conjugated to a moiety is disclosed. A method of forming a nanostructure includes stirring poly(lactide-co-glycolide (PLGA) and 11-Ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) in CH2Cl2 to create a PLGA mixture, n-boc-ethyelenediamine and N,N-Diisopropylethylamine (DIEA) are added to the PLGA mixture to create a reaction mixture. The reaction mixture is then precipitated in cold diethyl ether to form a purified polymer, which is then dried. The dried and purified polymer is then reconstituted in CH2Cl2:TFA solution and stirred under inert conditions. The product of the reconstituting step is evaporated to form a clear viscous residue that is dissolved in CH2Cl2 and then precipitated in cold ether to form a polymer. These functional polymers can encapsulate a variety of bioactives forming nanosystems improving the performance of bioactives.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: September 29, 2020
    Assignee: The Texas A&M University System
    Inventors: Naga Venkata Ravi Kumar Majeti, Raghu Ganugula, Meenakshi Arora, Prabhjot Saini
  • Patent number: 10786261
    Abstract: An embodiment includes a system comprising: an outer conduit; a shape memory polymer (SMP) foam; a metal backbone including: (a)(i) a first portion that extends from the SMP foam proximal end to the SMP foam distal end and which is generally covered by the SMP foam, and (a)(ii) a distal portion that extends distally from the SMP foam distal end and which is not covered by the SMP foam; wherein: (b)(i) SMP foam and the metal backbone are both included within the outer conduit adjacent to the outer conduit distal end; (b)(ii) the metal backbone distal portion transitions from a secondary shape that is uncoiled to a primary shape that is coiled; and (b)(iii) the metal backbone distal portion is in the metal backbone distal portion secondary shape and is located between the SMP foam distal end and the distal end of the outer conduit.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: September 29, 2020
    Assignee: The Texas A&M University System
    Inventors: Duncan J. Maitland, Todd L. Landsman, Jennifer N. Rodriguez, Anthony J. Boyle, Alan C. Glowczwski, Mark A. Wierzbicki
  • Publication number: 20200297825
    Abstract: Vaccine compositions including a yeast comprising an immunostimulatory polypeptide and optionally an antigenic polypeptide are provided herein. The immunostimulatory polypeptide and the antigenic polypeptide are expressed or displayed on the surface of the yeast vaccine composition. Methods of using the vaccine composition to vaccinate subjects are also provided.
    Type: Application
    Filed: June 11, 2020
    Publication date: September 24, 2020
    Applicants: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS, The Texas A&M University System
    Inventors: Olivia B. Faulkner, Lisa Bielke, Leona Nicole Calhoun, Luc Berghman, Billy Hargis
  • Publication number: 20200296906
    Abstract: Disclosed are various embodiments for reinforcement learning-based irrigation control to maintain or increase a crop yield or reduce water use. A computing device may be configured to determine an optimal irrigation schedule for a crop planted in a field by applying reinforcement learning (RL), where, for a given state of a total soil moisture, the computing device performs an action, the action comprising waiting or irrigating crop. An immediate reward may be assigned to a state-action pair, the state-action pair comprising the given state of the total soil moisture and the action performed. The computing device may instruct an irrigation system to apply irrigation to at least one crop in accordance with the optimal irrigation schedule determined, where the optimal irrigation schedule includes an amount of water to be applied at a predetermined time.
    Type: Application
    Filed: December 11, 2018
    Publication date: September 24, 2020
    Applicant: The Texas A&M University System
    Inventors: Lijia SUN, Jiang HU, Dana O. PORTER, Thomas H. MAREK, Charles C. HILLYER, Yanxiang YANG
  • Patent number: 10780175
    Abstract: The present invention provides a biodegradable “precision polymer system” (poly system) and methods for preparing pharmaceutically effective “precision polymer nanosystems” (polymer nanosystem) for delivery and/or targeting of drugs or drug like compounds.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: September 22, 2020
    Assignee: The Texas A&M University System
    Inventors: Naga Venkata Ravi Kumar Majeti, Prabhjot Saini, Raghu Ganugula, Meenakshi Arora
  • Patent number: 10780419
    Abstract: Disclosed are non-noble element compositions of matter, structures, and methods for producing the catalysts that can catalyze oxygen reduction reactions (ORR). The disclosed composition of matter can be comprised of graphitic carbon doped with nitrogen and associated with one or two kinds of transition metals. The disclosed structure is a three dimensional, porous structure comprised of a plurality of the disclosed compositions of matter. The disclosed structure can be fashioned into an electrode of an electrochemical cell to serve as a diffusion layer and also to catalyze an ORR. Two methods are disclosed for producing the disclosed composition of matter and structure. The first method is comprised of two steps, and the second method is comprised of a single step.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: September 22, 2020
    Assignee: The Texas A&M University System
    Inventors: Woongchul Choi, Gang Yang, Choongho Yu
  • Patent number: 10781294
    Abstract: An embodiment includes a system comprising: a monolithic shape memory polymer (SMP) foam having first and second states; wherein the SMP foam includes: (a) polyurethane, (b) an inner half portion having inner reticulated cells defined by inner struts, (c) an outer half portion, having outer reticulated cells defined by outer struts, surrounding the inner portion in a plane that provides a cross-section of the SMP foam, (d) hydroxyl groups chemically bound to outer surfaces of both the inner and outer struts. Other embodiments are discussed herein.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: September 22, 2020
    Assignees: Lawrence Livermore National Security, LLC, The Texas A&M University System
    Inventors: Landon D. Nash, Duncan J. Maitland, Nicole Docherty, Thomas S. Wilson, Ward Small, IV, Jason Ortega, Pooja Singhal
  • Publication number: 20200289625
    Abstract: The present invention provides a method for treating inflammatory conditions, for example, inflammatory bowel disease, ulcerative colitis induced inflammatory bowel disease, spinal cord injury or spaceflight-induced immune dysregulation and associated comorbidities in a mammal or subject in need of such treatment. The present invention also provides a method for decreasing osteocyte protein levels in a mammal suffering from inflammatory condition. A pharmacologically effective does of Irisin or a pharmaceutical composition of irisin is administered to the mammal or subject one or more times.
    Type: Application
    Filed: October 25, 2018
    Publication date: September 17, 2020
    Applicant: Texas A&M University System
    Inventors: Corinne Metzger, Anand Narayanan, David Zawieja, Susan Bloomfield
  • Publication number: 20200291256
    Abstract: A method of applying a gas-impermeable coating includes forming a polyelectrolyte complex suspension. The polyelectrolyte complex suspension is applied to a substrate. The substrate having the polyelectrolyte complex applied theron is treated. The treating reduces salt content of the polyelectrolyte complex.
    Type: Application
    Filed: October 18, 2017
    Publication date: September 17, 2020
    Applicant: The Texas A&M University System
    Inventors: Jaime C. Grunlan, Merid Haile, Ryan Smith
  • Publication number: 20200295370
    Abstract: An energy storage device and method of forming and operating the same. In one embodiment, the energy storage device includes a positive electrode including a first redox polymer deposited on a first conductive porous substrate. The energy storage device also includes a solid-state polyelectrolyte separator operative as a voltage generator, and a negative electrode including a second redox polymer deposited on a second conductive porous substrate, thereby forming an electrochemical cell.
    Type: Application
    Filed: February 17, 2017
    Publication date: September 17, 2020
    Applicant: The Texas A&M University System
    Inventors: Choongho Yu, Suk Lae Kim
  • Patent number: 10763536
    Abstract: Embodiments of the claimed invention are directed to a device, comprising: an anode that includes a lithiated silicon-based material and a sulfur-based cathode, wherein the anode and the cathode are designed to have mesoporous structures. In certain embodiments, the sulfur-based cathode is a mesoporous carbon structure comprising sulfur within the mesopores. A further embodiment of the invention is directed to a device comprising a semi-liquid lithium-sulfur battery comprising a lithium anode and a sulfur cathode. In certain embodiments, the sulfur cathode comprises a liquid catholyte, which is housed within a reservoir that is a carbon nanotube sponge. An additional embodiment of the invention is directed to a method for producing a lithiated silicon anode and a sulfur-based cathode.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: September 1, 2020
    Assignee: The Texas A&M University System
    Inventors: Choongho Yu, Xiong Pu