Abstract: A system, method, and apparatus for simulating the detection of radiation comprise at least one simulated radioactive source, a simulated radiation detector, and an emulating module configured to simulate a detection level for the at least one simulated radioactive source according to a radiation level associated with the simulated radioactive source, wherein the simulated detection level is provided on the simulated radiation detector.
Abstract: The present invention provides a method of hydraulically fracturing a well penetrating an subterranean formation by optimizing the spacing of fractures along a wellbore to form a complex network of hydraulically connected fractures by identifying a deviated wellbore in a subterranean formation; introducing a series of fractures in the deviated wellbore, wherein the series of fractures comprising at least a first fracture, a second fracture, a third fracture and a fourth fracture each separated by a non-uniformed and an increased spacing distance such that the spacing distance from each adjacent fracture in the series of fractures is at an increased distance; and forming one or more complex fractures extending from the series of fractures to form a complex fracture network.
Type:
Grant
Filed:
September 23, 2013
Date of Patent:
October 8, 2019
Assignee:
Texas Tech University System
Inventors:
Mohamed Soliman, Mehdi Rafiee, Elias Pirayesh
Abstract: Disclosed is a system and method for a hybrid radar system that integrates frequency-modulated continuous wave (FMCW) mode and interferometry mode. The radar works as a time division system that continuously switches between the FMCW mode and interferometry mode. The FMCW mode is responsible for absolute range detection and the interferometry mode takes cares of the weak physiological movement monitoring. The respective accuracies in range detection and displacement measurement complements the advantages of the two radar modes, providing versatile performance. By steering the antenna beam, the proposed radar system becomes an ideal solution for indoor health care, human localization, and human-computer interaction. Objects or human targets with or without stationary clutters can be precisely located. At the same time, the targets' vital signs and gestures can be monitored.
Abstract: Devices, methods and systems for wave and water level measurement using a single DC (direct current)-coupled CW (continuous wave) Doppler radar for detecting water elevation changes in time when installed up to several meters from the water surface. The radar is wireless and can stream continuous data to a local PC (personal computer) or base station in range of its radio. The radar can sample up to 40 Hz and can run on batteries for continuous sampling. The radars can include multiple radar configurations of 1, 2 and 4 radar configurations. Applications for this radar can include the measurement of beach run-up, free surface elevation in tidal zones, and storm surge elevations near bridges and critical infrastructure during storm events.
Type:
Grant
Filed:
January 19, 2016
Date of Patent:
October 8, 2019
Assignees:
UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC., TEXAS TECH UNIVERSITY SYSTEMS
Inventors:
Jennifer Anne Bridge, Changzhi Li, Changzhan Gu, Justin R. Davis
Abstract: Disclosed is an invention of cotton lines 2-340/1-1422, 1-1422/SCM 3-7-3, 1-1422/2-340, 1-136/2-340, AFIS 1-1422. AFIS 2-340, AFIS 1-136, and SCM 3-7-3, and relates to seeds, plants, plant cells, plant tissue and harvested products, lint, and oil, as well as to hybrid cotton plants and seeds and other plants, cultivars, and varieties produced by essentially deriving such plants, cultivars, and varieties from cotton lines 2-340/1-1422, 1-1422/SCM 3-7-3, 1-1422/2-340, 1-136/2-340, AFIS 1-1422, AFIS 2-340, AFIS 1-136, and SCM 3-7-3. The present invention particularly relates to the development of specific cotton lines for the regulation of palmitic acid for the production of seeds having cottonseed oil content with reduced levels of palmitic acid. The cotton lines of the present disclosure have lower levels of palmitic acid content, and allows for the germination of seed at lower soil temperatures than current commercially available cotton cultivars.
Abstract: The present invention includes compositions and methods for eliminating or reducing microbial contamination in lymph nodes that enter the food supply from livestock comprising: identifying an animal in need of eliminating or reducing microbial contamination in non-gut associated lymph nodes that enter the food supply, and providing the animal with an effective amount of a lactic acid bacteria or probiotic bacterial sufficient to reduce or eliminate the microbial contamination in non-gut associated lymph nodes.
Type:
Grant
Filed:
December 30, 2014
Date of Patent:
September 24, 2019
Assignee:
Texas Tech University System
Inventors:
Mindy M. Brashears, Guy H. Loneragan, Kendra Nightingale, J. Chance Brooks
Abstract: A electromagnetic wave-induced heating of CNT filled (or coated) polymer composites for enhancing inter-bead diffusive bonding of fused filament fabricated parts. The technique incorporates electromagnetic wave absorbing nanomaterials (carbon nanotubes (CNTs)) onto the surface or throughout the volume of 3D printer polymer filament to increase the inter-bead bond strength following a post electromagnetic wave irradiation treatment and/or in-situ focused electromagnetic beam during printing. The overall strength of the final 3D printed part will be dramatically increased and the isotropic mechanical properties of fused filament part will approach or exceed conventionally manufactured counterparts.
Type:
Grant
Filed:
December 26, 2014
Date of Patent:
September 17, 2019
Assignee:
TEXAS TECH UNIVERSITY SYSTEM
Inventors:
Charles B. Sweeney, Micah J. Green, Mohammad Saed
Abstract: Diagnostic tool for eye disease detection using a smartphone. At least some of the example embodiments are methods including capturing, by way of a camera lens on a device, an image of an eye to create a raw specimen; processing the raw specimen to create a processes specimen; performing edge detection on the processed specimen to detect a boundary of a cornea; extracting a region of interest of the cornea; identifying a boundary of the region of interest using a boundary tracing technique to identify a second boundary; analyzing the second boundary of the region of interest, by measuring a slope of the second boundary; and classifying the region of interest as including an eye disease, based on the analyzing the second boundary.
Type:
Application
Filed:
March 6, 2019
Publication date:
September 12, 2019
Applicant:
Texas Tech University System
Inventors:
Behnam Askarian, Jo Woon Chong, Fatemehsadat Tabei
Abstract: Methods and systems for imaging a magnetic field as vectors (or scalars if desired) in either two or three dimensions without the need for rastering or relative motion between the sensors and the magnetic field being viewed. A secondary function is to image electric current flow as vectors. Example embodiments can be scaled to fit both large and small applications by using discreet devices or manufacturing with MEMS technologies.
Type:
Grant
Filed:
June 2, 2017
Date of Patent:
August 27, 2019
Assignee:
Texas Tech University System
Inventors:
Shelby Lacouture, Argenis Bilbao, Stephen Bayne
Abstract: The present invention provides a method for treating, alleviating, reversing or delaying progression of at least one symptom of Parkinson's Disease in a subject in need thereof by administering to the subject an effective amount of a 2-amino-2[2-(4-octylphenyl)ethyl]propane-1,3-diol composition or a derivative thereof to treat at least one symptom of Parkinson's Disease.
Abstract: The present invention includes antigenic fusion proteins, nucleic acids encoding the fusion proteins and methods of making and using the same, wherein the fusion protein comprises three or more different influenza A ectodomains of Matrix Protein 2 (M2e); one or more stem regions of an influenza A hemagglutinin 2 (HA2) protein; and optionally an anthrax antigen, wherein the fusion protein is immunogenic across strains.
Type:
Grant
Filed:
March 1, 2017
Date of Patent:
August 6, 2019
Assignee:
Texas Tech University System
Inventors:
Mingtao Zeng, Maria T. Arevalo, Junwei Li
Abstract: An apparatus and computerized method optimizes or generates a sigma profile for a molecule by receiving a sigma profile for the molecule, calculating an activity coefficient for the molecule using the sigma profile for the molecule, calculating a solubility for the molecule using the activity coefficient for the molecule, optimizing or adjusting the sigma profile for the molecule by adjusting the sigma profile using an objective function and one or more constraints, providing the sigma profile to an output device communicably coupled to a processor.
Abstract: An apparatus and method of separation of LOX and other commercially valuable components, such as LAr from liquefied air, which consists primarily of LN2. Strong magnetic field gradient and gravity are used to separate LOX from liquefied air, based upon the different magnetic properties of LOX and LN2. The apparatus and method employ a magnetic field gradient to levitate the LN2 and LAr diamagnetic components of liquid air while accelerating the paramagnetic LOX component toward the bottom to achieve oxygen separation. In other embodiments, a leak valve system can be used.
Abstract: The present invention includes composition and methods for a core matrix comprising a dissolved cellulose fiber of, e.g., high molecular weight (DP>5000) or microcrystalline cellulose of low molecular weight (DP: 150-300), printed into a two or three dimensional pattern; a conductive material comprising a carbon nanotube or graphene oxide disposed on or about the cellulose fiber or microcrystalline cellulose; and an enhancer or stabilizer that stabilizes the dissolved cellulose or microcrystalline cellulose disrupted during a printing process, wherein the conductive material and the cellulose or microcrystalline cellulose forms one or more features in or on the cellulose fiber or microcrystalline cellulose.
Abstract: Disclosed is a system and method for a 24-GHz phased array for indoor smart radar comprising at least 6 horizontally placed antenna elements as a vertically placed 5-element series-fed microstrip patch array. The beam of the phased array can be continuously steered on the H-plane to different directions through a novel vector control array. Each element can adjust the phase and amplitude of the corresponding element of the horizontally placed linear array. The phased array system of the present invention may be fabricated on a single printed circuit board (PCB), and PIN diodes are used to realize beam steering by modulating the decomposed received signal. In order to compensate for the loss of the vector control array and reduce the noise figure, six low noise amplifiers (LNAs) are also used in the array. The present invention has the ability to continuously steer the beam on the H-plane.
Abstract: The present invention includes an isolated antigen against influenza A and a method of making the same that includes an ectodomain of influenza A Matrix Protein 2 (M2e) and a stem region of an influenza A hemagglutinin 2 (HA2) protein and an adjuvant. The invention further includes formulating the antigen into an isolated immune response stimulating fusion protein and/or a vaccine.
Abstract: The present invention provides a set of oligonucleotides to screen for the presence of targeted Salmonella serotypes in an enrichment or to characterize presumptive colonies. The set of oligonucleotides includes at least one set of primers and probe for the detection of Salmonella serotype selected from typhimurium, enteritidis, newport, heidelberg, infantis, virchow and Hadar. The set of oligonucleotides may include up to 5 different primer sets and the corresponding probes.
Type:
Grant
Filed:
March 26, 2015
Date of Patent:
May 14, 2019
Assignee:
Texas Tech University System
Inventors:
Guy Loneragan, Mindy M. Brashears, Kendra Nightingale, Marie Bugarel
Abstract: Disclosed is a device and method for a microfluidic paper-based analytical device (?PAD), for low-cost and user-friendly analytical devices capable of use for disease screening, point-of-care pathogen and biomarker detection, food and water quality testing. A microfluidic paper-based analytical device is further produced by chemical vapor deposition for multiplex heavy metal detection in water. Assay demonstrations proved that the immobilization of functional groups and multiplex heavy metal detection is suitable for real-world applications and established the approach for DNA analysis. The disclosed invention comprises multilayer capability, including the ability for various biomolecules to be immobilized with charge interaction.
Type:
Application
Filed:
August 13, 2018
Publication date:
April 25, 2019
Applicant:
Texas Tech University System
Inventors:
Jungkyu Kim, Jasmine Pramila Devadhasan, Ryan Howse
Abstract: The present invention includes a method and an apparatus for determining the viscosity of a fluid. The apparatus comprising that includes a microchannel connected to a glass capillary in fluid communication with the microchannel, a digital camera positioned with respect to the glass capillary to capture two or more images of a fluidic slug as a fluid travels within the glass capillary, and a processor communicably coupled to the digital camera that determines a viscosity of the fluid based on the two or more digital images.