Patents Assigned to The Salk Institute for Biological Studies
  • Patent number: 11690557
    Abstract: Determining low power frequency range information from spectral data. Raw signal data can be adjusted to increase dynamic range for power within low power frequency ranges as compared to higher-power frequency ranges to determine adjusted source data valuable for acquiring low power frequency range information. Low power frequency range information can be used in the analysis of a variety of raw signal data. For example, low power frequency range information within electroencephalography data for a subject from a period of sleep can be used to determine sleep states. Similarly, automated full-frequency spectral electroencephalography signal analysis can be useful for customized analysis including assessing sleep quality, detecting pathological conditions, and determining the effect of medication on sleep states.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: July 4, 2023
    Assignee: The Salk Institute For Biological Studies Intellectual Property And Technology Transfer
    Inventor: Philip Low
  • Patent number: 11685901
    Abstract: The invention features pancreatic islet and pancreatic organoids, and cell cultures and methods that are useful for the rapid and reliable generation of pancreatic islet and pancreatic islet organoids. The invention also features methods of treating pancreatic diseases and methods of identifying agents that are useful for treatment of pancreatic diseases, such as type 2 diabetes and pancreatic cancer, using the pancreatic islet and pancreatic organoids of the invention.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: June 27, 2023
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald Evans, Michael Downes, Annette Atkins, Eiji Yoshihara, Ruth Yu
  • Patent number: 11674158
    Abstract: Disclosed herein are homology-independent targeted integration methods of integrating an exogenous DNA sequence into a genome of a non-dividing cell and compositions for such methods. Methods herein comprise contacting the non-dividing cell with a composition comprising a targeting construct comprising the exogenous DNA sequence and a targeting sequence, a complementary strand oligonucleotide homologous to the targeting sequence, and a nuclease, thereby altering the genome of the non-dividing cell.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: June 13, 2023
    Assignee: Salk Institute for Biological Studies
    Inventors: Juan Carlos Izpisua Belmonte, Keiichiro Suzuki, Reyna Hernandez-Benitez, Jun Wu, Yuji Tsunekawa
  • Patent number: 11642423
    Abstract: The present disclosure relates to nucleic acid promoter sequences that are able to specifically express genes operatively linked to the promoter in brainstem and spinal motor neuron cells, and to methods for using such promoters to selectively express genes in motor neurons in vitro and in vivo. It is based, at least in part, on the discovery that the nucleic acid of SEQ ID NO: 1 functioned as a motor neuron-specific promoter and was successful in expressing transgenes in motor neuron cells in vivo. The present disclosure also relates to compositions that can increase the activity or expression level of miR-218 and to compositions that can decrease the expression of miR-218 target nucleic acids.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: May 9, 2023
    Assignee: Salk Institute for Biological Studies
    Inventor: Neal Dilip Amin
  • Publication number: 20230111083
    Abstract: Provided are methods for identification of DNA repair locations in a genome of a non-dividing cell, by incorporating a reactive nucleoside analogs into the genome of the non-dividing cell, then sequencing the regions of the genome that incorporated the nucleoside analog.
    Type: Application
    Filed: June 15, 2020
    Publication date: April 13, 2023
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Fred H. Gage, Dylan A. Reid, Patrick J. Reed
  • Publication number: 20230115640
    Abstract: Provided herein are blastoids and methods for producing the same that are obtained from an extended pluripotent stem (EPS) cell. The herein-disclosed methods provide a unique and highly malleable in vitro system for studying early preimplantation development. Also provided are EPS-blastoids derived from a somatic cell.
    Type: Application
    Filed: October 2, 2020
    Publication date: April 13, 2023
    Applicant: Salk Institute for Biological Studies
    Inventors: Juan Carlos Izpisua Belmonte, Ronghui Li, Cuiqing Zhong, Jun Wu
  • Publication number: 20230097335
    Abstract: The present disclosure provides FGF1 mutant proteins, which selectively bind to/activate FGFR1b. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. Methods of using the disclosed FGF1 mutants to reduce blood glucose in a mammal and treat a metabolic disorder are provided.
    Type: Application
    Filed: December 2, 2022
    Publication date: March 30, 2023
    Applicant: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sihao Liu, Ruth T. Yu
  • Publication number: 20230088476
    Abstract: Recombinant adenovirus genomes that include an exogenous open reading frame (ORF) and a self-cleaving peptide coding sequence are described. Optimal placement of the exogenous genes for minimal impact on viral kinetics is further disclosed. Therapeutic applications of the recombinant adenoviruses are also described.
    Type: Application
    Filed: June 29, 2022
    Publication date: March 23, 2023
    Applicant: Salk Institute for Biological Studies
    Inventors: Clodagh O'Shea, William Partlo, Colin Powers
  • Publication number: 20230078590
    Abstract: The invention features compositions and methods treating or preventing for age-related insulin resistance, type 2 diabetes and related disorders. The method involves depleting fTreg cells with an anti-ST2 antibody to decrease age-related fTreg accumulation and restore insulin sensitivity, thereby treating age-related insulin resistance, type 2 diabetes and related disorders.
    Type: Application
    Filed: July 19, 2022
    Publication date: March 16, 2023
    Applicant: Salk Institute for Biological Studies
    Inventors: Sagar P. BAPAT, Ye ZHENG, Ronald EVANS, Michael DOWNES, Annette R. ATKINS, Ruth T. YU
  • Patent number: 11578052
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: February 14, 2023
    Assignees: Mitobridge, Inc., The Salk Institute for Biological Studies
    Inventors: Michael Downes, Ronald M. Evans, Arthur Kluge, Bharat Lagu, Masanori Miura, Sunil Kumar Panigrahi, Michael Patane, Susanta Samajdar, Ramesh Senaiar, Taisuke Takahashi
  • Patent number: 11542309
    Abstract: The present disclosure provides FGF1 mutant proteins, which selectively bind to/activate FGFR1b. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. Methods of using the disclosed FGF1 mutants to reduce blood glucose in a mammal and treat a metabolic disorder are provided.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: January 3, 2023
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sihao Liu, Ruth T. Yu
  • Publication number: 20220411763
    Abstract: Methods of assembling modified adenoviruses, libraries of adenoviral gene modules and compositions thereof are provided herein.
    Type: Application
    Filed: February 25, 2022
    Publication date: December 29, 2022
    Applicant: Salk Institute for Biological Studies
    Inventors: Clodagh O'Shea, Colin Powers
  • Publication number: 20220333106
    Abstract: Provided herein are methods and compositions for editing a target genome in a cell comprising contacting the cell with (i) a single homology arm construct comprising a replacement sequence and a targeted endonuclease cleavage site; and (ii) a targeted endonuclease, wherein the replacement sequence comprises at least one nucleotide difference compared to the target genome and wherein the target genome comprises a sequence homologous to the targeted endonuclease cleavage site.
    Type: Application
    Filed: September 20, 2019
    Publication date: October 20, 2022
    Applicant: Salk Institute for Biological Studies
    Inventors: Juan Carlos Izpisua Belmonte, Keiichiro Suzuki, Mako Tsuji, Reyna Hernandez-Benitez
  • Publication number: 20220315901
    Abstract: The invention generally features compositions comprising induced pluripotent stem cell progenitors (also termed reprogramming progenitor cells) and methods of isolating such cells. The invention also provides compositions comprising induced pluripotent stem cells (iPSCs) derived from such progenitor cells. Induced pluripotent stem cell progenitors generate iPSCs at high efficiency.
    Type: Application
    Filed: December 8, 2020
    Publication date: October 6, 2022
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: RONALD EVANS, MICHAEL DOWNES, YASUYUKI KIDA, TERUHISA KAWAMURA, ZONG WEI, RUTH T. YU, ANNETTE R. ATKINS
  • Patent number: 11440889
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: September 13, 2022
    Assignees: The Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F. W. Keana, Christopher Liddle
  • Patent number: 11428697
    Abstract: The invention features compositions and methods treating or preventing for age-related insulin resistance, type 2 diabetes and related disorders. The method involves depleting fTreg cells with an anti-ST2 antibody to decrease age-related fTreg accumulation and restore insulin sensitivity, thereby treating age-related insulin resistance, type 2 diabetes and related disorders.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: August 30, 2022
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Sagar P. Bapat, Ye Zheng, Ronald Evans, Michael Downes, Annette R. Atkins, Ruth T. Yu
  • Publication number: 20220265855
    Abstract: Provided herein are compositions and systems for reconstitution of RNA molecules, including methods for using these molecules. For example, such molecules can be used to deliver a protein coding sequence over two or more viral vectors (such as AAVs), resulting in reconstitution of the full-length protein in a cell. Such methods can be used to deliver a therapeutic protein, for example to treat a genetic disease or cancer.
    Type: Application
    Filed: May 10, 2022
    Publication date: August 25, 2022
    Applicant: Salk Institute for Biological Studies
    Inventors: Lukas Christoph Bachmann, Samuel Lawrence Pfaff
  • Patent number: 11420934
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: August 23, 2022
    Assignees: The Salk Institute for Biological Studies, Mitobridge, Inc.
    Inventors: Ronald M. Evans, Michael Downes, Thomas J. Baiga, Joseph P. Noel, Emi Kanakubo Embler, Weiwei Fan, John F. W. Keana, Mark G. Bock, Authur F. Kluge, Mike A. Patane
  • Patent number: 11401529
    Abstract: Recombinant adenovirus genomes that include an exogenous open reading frame (ORF) and a self-cleaving peptide coding sequence are described. Optimal placement of the exogenous genes for minimal impact on viral kinetics is further disclosed. Therapeutic applications of the recombinant adenoviruses are also described.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: August 2, 2022
    Assignee: Salk Institute for Biological Studies
    Inventors: Clodagh O'Shea, William Partlo, Colin Powers
  • Publication number: 20220239615
    Abstract: Provided herein are CRISPR/Cas methods and compositions for targeting RNA molecules, which can be used to detect, edit, or modify a target RNA.
    Type: Application
    Filed: April 1, 2022
    Publication date: July 28, 2022
    Applicant: Salk Institute for Biological Studies
    Inventors: Patrick D. Hsu, Silvana Konermann