Patents Assigned to The Solaria Corporation
  • Publication number: 20130192661
    Abstract: A solar module includes a substrate member, a plurality of photovoltaic strips arranged in an array configuration overlying the substrate member, and a concentrator structure comprising extruded glass material operably coupled to the plurality of photovoltaic strips. A plurality of elongated convex regions are configured within the concentrator structure. The plurality of elongated convex regions are respectively coupled to the plurality of photovoltaic strips. Each of the plurality of elongated convex regions includes a length and a convex surface region characterized by a radius of curvature, each of the elongated convex regions being configured to have a magnification ranging from about 1.5 to about 5. A coating material rendering the glass self-cleaning overlies the plurality of elongated convex regions.
    Type: Application
    Filed: January 17, 2013
    Publication date: August 1, 2013
    Applicant: Solaria Corporation
    Inventor: Solaria Corporation
  • Patent number: 8409898
    Abstract: Assembly system for photovoltaic packages. According an embodiment, the present invention provides a system for assembling photovoltaic packages. The system includes a base plate member, which comprises a plurality of coupling elements. The plurality of coupling elements are characterized by a first length. The plurality of coupling elements is aligned according to a predetermined configuration. The plurality of coupling elements includes first and second coupling elements. The system also includes a top plate member, which includes a plurality of openings and a plurality of locator elements. The plurality of openings is characterized by a second length. The second length is greater than the first length. The openings and the locator elements are aligned according to the first predetermined configurations. The top plate member is disengageably coupled to the base plate member by the coupling elements and the openings.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: April 2, 2013
    Assignee: Solaria Corporation
    Inventors: Douglas R. Battaglia, Jr., Ziehl-Neelsen L. Co
  • Publication number: 20130032194
    Abstract: A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.10 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.10 mm and less characterizing a region between the first concentrator element and the second concentrator element.
    Type: Application
    Filed: July 11, 2012
    Publication date: February 7, 2013
    Applicant: Solaria Corporation
    Inventors: Kevin R. GIBSON, Alelie Funcell
  • Patent number: 8361259
    Abstract: A method for forming a solar energy collection device includes receiving a sheet of glass comprising glass material, wherein the sheet of glass includes a plurality of light concentrating geometric features, measuring geometric characteristics for the plurality of light concentrating geometric features, mathematically calculating predicted light concentration characteristics for each of the plurality of light concentrating geometric features in response to the geometric characteristics, determining placement locations for a plurality of PV strips in response to the predicted light concentration characteristics for each of the plurality of light concentrating geometric features, and securing the plurality of PV strips relative to the sheet of glass in response to the placement locations for the plurality of PV strips.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: January 29, 2013
    Assignee: Solaria Corporation
    Inventors: Shirish Shah, Frank Magana, Junaid Fatehi, Enrico Casaje, Raghunandan Chaware
  • Publication number: 20120295388
    Abstract: A solar module includes a substrate member, a plurality of photovoltaic strips arranged in an array configuration overlying the substrate member, and a concentrator structure comprising extruded glass material operably coupled to the plurality of photovoltaic strips. A plurality of elongated convex regions are configured within the concentrator structure. The plurality of elongated convex regions are respectively coupled to the plurality of photovoltaic strips. Each of the plurality of elongated convex regions includes a length and a convex surface region characterized by a radius of curvature, each of the elongated convex regions being configured to have a magnification ranging from about 1.5 to about 5. A coating material rendering the glass self-cleaning overlies the plurality of elongated convex regions.
    Type: Application
    Filed: July 30, 2012
    Publication date: November 22, 2012
    Applicant: Solaria Corporation
    Inventors: Kevin R. GIBSON, Abhay MAHESHWARI
  • Publication number: 20120275042
    Abstract: The invention provides a solar concentrator structure including a first concentrating element. The first concentrating element includes a first aperture region, a first exit region, a first side and a second side. The solar concentrator structure further includes a second or more concentrating elements integrally coupled with the first concentrating element in a parallel manner. The second concentrating element includes a second aperture region, a second exit region, the third side, and a fourth side. The third side joins with the second side to form an apex notch structure characterized by a radius of curvature. Additionally, the solar concentrator structure includes a separation region by a width separating the first exit region from the second exit region and a triangular region including the apex notch structure and a base defined by the separation region and a refractive index of about 1 characterizing the triangular region.
    Type: Application
    Filed: July 11, 2012
    Publication date: November 1, 2012
    Applicant: Solaria Corporation
    Inventor: Kevin R. GIBSON
  • Publication number: 20120234390
    Abstract: A solar cell device has a back cover member, which includes a surface area and a back area, and a plurality of photovoltaic regions disposed overlying the surface area of the back cover member. The plurality of photovoltaic regions may occupy a total photovoltaic spatial region. The device has an encapsulating material overlying a portion of the back cover member and a front cover member coupled to the encapsulating material. An interface region is provided along at least a peripheral region of the back cover member and the front cover member. A sealed region is formed on at least the interface region to form an individual solar cell from the back cover member and the front cover member. The total photovoltaic spatial region/the surface area of the back cover may be at a ratio of about 0.80 and less for the individual solar cell.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 20, 2012
    Applicant: Solaria Corporation
    Inventor: Kevin R. GIBSON
  • Publication number: 20120211052
    Abstract: A light energy collection device includes a glass layer having light concentrators for receiving light and for concentrating concentrated light, the light concentrators are elongated and substantially parallel manner to a first edge of the glass layer, wherein pitches of the light concentrators vary along the length generally within the range of approximately 5.5-5.8 mm, strings of multiple PV strips extending in a parallel manner to a second edge (perpendicular to the first edge) of the glass layer, wherein a string of PV strips includes: electrodes extending substantially parallel to the second edge, PV strips electrically coupled to the electrodes and extending substantially parallel to the first edge, wherein pitches of the PV strips vary along their length according to varying pitches of the light concentrators, wherein the PV strips receive concentrated light and output electrical energy in response to the concentrated light.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 23, 2012
    Applicant: Solaria Corporation
    Inventors: Ajay MARATHE, Douglas R. Battaglia, JR., Frank Magana, Raghunandan Chaware
  • Patent number: 8242352
    Abstract: The invention provides a solar concentrator structure including a first concentrating element. The first concentrating element includes a first aperture region, a first exit region, a first side and a second side. The solar concentrator structure further includes a second or more concentrating elements integrally coupled with the first concentrating element in a parallel manner. The second concentrating element includes a second aperture region, a second exit region, the third side, and a fourth side. The third side joins with the second side to form an apex notch structure characterized by a radius of curvature. Additionally, the solar concentrator structure includes a separation region by a width separating the first exit region from the second exit region and a triangular region including the apex notch structure and a base defined by the separation region and a refractive index of about 1 characterizing the triangular region.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: August 14, 2012
    Assignee: Solaria Corporation
    Inventor: Kevin R. Gibson
  • Patent number: 8242351
    Abstract: A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.10 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.10 mm and less characterizing a region between the first concentrator element and the second concentrator element.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 14, 2012
    Assignee: Solaria Corporation
    Inventors: Kevin R. Gibson, Alelie Funcell
  • Patent number: 8227688
    Abstract: A solar cell device. The device has a first lead frame member including a first end and a second end and a second lead frame member coupled to the first lead frame member. In a specific embodiment, the second lead frame member includes a third end and a fourth end. The device also has a plurality of first bonding sites numbered from 1 through N between the first end and the second end of the first lead frame member, where N is an integer greater than 2. The device has a plurality of second bonding sites numbered from 1 through N between the third end and the fourth end, where N is an integer greater than 2. Depending upon the specific embodiment, the device has a plurality of photovoltaic regions numbered from 1 through N respectively bonded onto the plurality of first bonding sites numbered from 1 through N and second bonding sites numbered from 1 through N.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: July 24, 2012
    Assignee: Solaria Corporation
    Inventor: Alelie Funcell
  • Publication number: 20120167947
    Abstract: A method for forming a solar energy collection device includes receiving a first photovoltaic string comprising a first plurality of photovoltaic strips coupled via a first plurality of conductors, wherein the first photovoltaic string is tested to have a first dark-field current/voltage characteristic, receiving a second photovoltaic string comprising a second plurality of photovoltaic strips coupled via a second plurality of conductors, wherein the second photovoltaic string is tested to have a second dark-field current/voltage characteristic, electrically coupling the first photovoltaic string and the second photovoltaic string, and wherein the first dark-field current/voltage characteristic is substantially similar to the second dark-field current/voltage characteristic.
    Type: Application
    Filed: December 31, 2010
    Publication date: July 5, 2012
    Applicant: Solaria Corporation
    Inventors: Douglas R. BATTAGLIA, JR., Qi Zhang
  • Publication number: 20120167946
    Abstract: A solar module device. The device has a substrate having a surface region. The device has one or more photovoltaic regions overlying the surface region of the substrate. In a preferred embodiment, each of the photovoltaic strips is derived from dicing a solar cell in to each of the strips. Each of the strips is a functional solar cell. The device also has an impact resistant glass member having a plurality of elongated concentrating elements spatially arranged in parallel configuration and operably coupled respectively to the plurality of elongated concentrating elements. Preferably, the impact resistant glass has a strength of at least 3× greater than a soda lime glass, e.g., conventional soda lime glass for conventional solar cells, e.g., a low iron soda lime glass. In a preferred embodiment, the impact resistant glass member comprises a planar region and a concentrator region comprising the plurality of elongated concentrating element spatially arranged in parallel configuration.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 5, 2012
    Applicant: Solaria Corporation
    Inventors: Abhay MAHESHWARI, Kevin R. Gibson
  • Publication number: 20120167945
    Abstract: Photovoltaic devices having shaped concentrator members. The present invention is directed to solar energies. More specifically, various embodiments of the present invention provide a shaped concentrator member that is used as a part of concentrated solar panel. The shape concentrator member includes semi-cylindrically shaped concentrator elements arranged and spaced in parallel to one another. At the edges of the shaped concentrator member, there are flat edge regions that include flat surfaces. There are other embodiments as well.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 5, 2012
    Applicant: Solaria Corporation
    Inventors: Daniel SHUGAR, Abhay Maheshwari
  • Publication number: 20120167948
    Abstract: A method for forming a solar energy collection device includes determining physical concentration characteristics for a plurality of light concentrating geometric features of a sheet of transparent material, determining placements for a plurality of photovoltaic strips in response to the physical concentration characteristics for the plurality of light concentrating geometric features, wherein the placements for each of the plurality of photovoltaic strips is associated with a two-dimensional displacement and an offset angle, placing the plurality of photovoltaic strips onto a stage in response to two-dimensional displacements and offset angles associated with each of the plurality of photovoltaic strips, and electrically coupling the plurality of photovoltaic strips with a plurality of conductors to form a photovoltaic assembly.
    Type: Application
    Filed: December 31, 2010
    Publication date: July 5, 2012
    Applicant: Solaria Corporation
    Inventors: Ajay Marathe, Douglas R. Battaglia, JR., Frank Magana, Raghunandan Chaware
  • Publication number: 20120125049
    Abstract: A glass concentrator for manufacture of solar energy conversion module is provided including a webbing that has a load sustenance characteristic and a hail impact resistance characteristic based on a first thickness of the webbing. The concentrator also includes a plurality of elongated concentrating elements integrally formed with the webbing. Each of the elongated concentrating elements has an aperture region, an exit region and two side regions, which bears a geometric concentration characteristic provided by a highly reflective side regions and an aperture-to-exit. scale ratio in a range from about 1.8 to about 4.5. The glass concentrator can be attached with a plurality of photovoltaic strips cumulatively on each and every exit regions and clamped with a rigid or flexible back cover member to form a solar concentrator module for converting sunlight to electric energy. The solar concentrator module based on certain embodiments meets the industrial qualification standards.
    Type: Application
    Filed: January 31, 2012
    Publication date: May 24, 2012
    Applicant: Solaria Corporation
    Inventor: Kevin R. GIBSON
  • Patent number: 8173890
    Abstract: A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.25 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.15 mm and less characterizing a region between the first concentrator element and the second concentrator element.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: May 8, 2012
    Assignee: Solaria Corporation
    Inventors: Kevin R. Gibson, Alelie Funcell
  • Patent number: 8168884
    Abstract: A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.25 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.15 mm and less characterizing a region between the first concentrator element and the second concentrator element.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: May 1, 2012
    Assignee: Solaria Corporation
    Inventors: Kevin R. Gibson, Alelie Funcell
  • Publication number: 20120067398
    Abstract: A method for forming a laminated photovoltaic structure includes providing a sheet of transparent material having light concentrating features, disposing adhesive material adjacent to the sheet of transparent material, disposing photovoltaic strips adjacent to the adhesive material, wherein the photovoltaic strips are positioned relative to the sheet of transparent material in response to exitant light characteristics of the light concentrating features, wherein photovoltaic strips are coupled via associated bus bars, wherein gap regions are located between bus bars of neighboring photovoltaic strips, disposing a rigid layer of material adjacent to the photovoltaic strips to form a composite photovoltaic structure; and thereafter laminating the composite photovoltaic structure to fill the gap regions with adhesive material and to form the laminated photovoltaic structure, wherein adhesive material adheres to the bus bars.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 22, 2012
    Applicant: Solaria Corporation
    Inventors: Abhay MAHESHWARI, Raghunandan CHAWARE
  • Publication number: 20120067397
    Abstract: A method for forming a solar energy collection device includes receiving a sheet of glass comprising glass material, wherein the sheet of glass includes a plurality of light concentrating geometric features, measuring geometric characteristics for the plurality of light concentrating geometric features, mathematically calculating predicted light concentration characteristics for each of the plurality of light concentrating geometric features in response to the geometric characteristics, determining placement locations for a plurality of PV strips in response to the predicted light concentration characteristics for each of the plurality of light concentrating geometric features, and securing the plurality of PV strips relative to the sheet of glass in response to the placement locations for the plurality of PV strips.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 22, 2012
    Applicant: Solaria Corporation
    Inventors: Shirish Shah, Frank Magana, Junaid Fatehi, Enrico Casaje, Raghunandan Chaware