Patents Assigned to The Technical University of Denmark
  • Publication number: 20110045628
    Abstract: A method of thermocleaving a thermocleavable polymer layer which is in thermal contact with a heat sensitive component that is not tolerant of the temperature required for thermocleavage of the thermocleavable polymer layer, in which the thermocleavable polymer layer is illuminated with a light source having a wavelength range more strongly absorbed by the thermocleavable polymer and substantially less strongly absorbed by the heat sensitive component, such that the thermocleavable polymer layer reaches a temperature sufficient to cause thermocleavage of the polymer without causing detrimental heating to the heat sensitive component. Further provided is apparatus for carrying out the above method.
    Type: Application
    Filed: February 17, 2009
    Publication date: February 24, 2011
    Applicant: THE TECHNICAL UNIVERSITY OF DENMARK
    Inventor: Frederik Christian Krebs
  • Publication number: 20110030789
    Abstract: A method of forming a conducting polymer based photovoltaic device including: (a) providing a transparent first electrode; (b) providing the transparent first electrode with a layer of metal oxide nanoparticles, wherein the metal oxide is selected from the group consisting of: TiO2, TiOx, and ZnO; (c) providing the layer of metal oxide nanoparticles with a bulk hetero junction layer including metal oxide nanoparticles and a hole conducting polymer containing thermocleavable groups, wherein the metal oxide is selected from the group consisting of: TiO2, TiOx, CeO2, Nb2O5 and ZnO; (d) heating the bulk heterojunction layer, to cleave the thermally cleavable groups to produce an insoluble hole containing polymer; (e) providing the bulk heterojunction layer with a hole transporting layer; and (f) providing the hole transporting layer with a second electrode. Also a conducting polymer based photovoltaic device, and polymeric compounds suitable for use in such devices and methods.
    Type: Application
    Filed: February 17, 2009
    Publication date: February 10, 2011
    Applicant: THE TECHNICAL UNIVERSITY OF DENMARK
    Inventor: Frederik Christian Krebs
  • Publication number: 20100313505
    Abstract: The invention relates to a light-weight load-bearing structure (1) with optimized compression zone (2), where along one or more compression zones (2) in the structure (1) to be cast a core (3) of strong concrete is provided, which core (3) is surrounded by concrete of less strength (4) compared to the core (3) of strong concrete. The invention also relates to a method of casting of light-weight load-bearing structures (1) with optimized compression zone (2) where one or more channels, grooves, ducts, pipes and/or hoses (5) formed in the load-bearing structure (1) serves as moulds for moulding one or more cores (3) of strong concrete in the light-weight load-bearing structure (1).
    Type: Application
    Filed: November 21, 2008
    Publication date: December 16, 2010
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventor: Kristian Hertz
  • Publication number: 20100304146
    Abstract: This invention relates to a plasma surface modification process (and a corresponding a system) of a solid object (100) comprising creating plasma (104) by a plasma source (106), application of the plasma (104) to at least a part of a surface (314) of the solid object (100), generating ultrasonic high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up significantly.
    Type: Application
    Filed: May 9, 2008
    Publication date: December 2, 2010
    Applicants: FORCE TECHNOLOGY, TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Niels Krebs, Alexander Bardenshtein, Yukihiro Kusano, Henrik Bindslev, Henrik Junge Mortensen
  • Publication number: 20100190265
    Abstract: The present invention relates to a device for use in performing assays on standard laboratory solid supports whereon chemical entities are attached. The invention furthermore relates to the use of such a device and a kit comprising such a device. The device according to the present invention is adapted to receive one or more replaceable solid support(s) (40) onto which chemical entities (41) are attached, said device comprising a base (1, 60, 80, 300, 400, 10, 70, 140, 20, 90, 120, 150, 30, 100), one or more inlet(s) (5), one or more outlet(s) (6). The base and the solid support (40) defines, when operatively connected, one or more chambers (21) comprising the chemical entities (41), the inlet(s) (5) and outlet(s) (6) and chambers (21) being in fluid connection. The device further comprise means for providing differing chemical conditions in each chamber (21).
    Type: Application
    Filed: December 1, 2006
    Publication date: July 29, 2010
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Martin Dufva, Sarunas Petronis, Jesper Petersen
  • Patent number: 7745031
    Abstract: SOFC cell comprising a metallic support 1 ending in a substantially pure electron conducting oxide, an active anode layer 2 consisting of doped ceria, ScYSZ, Ni—Fe alloy, an electrolyte layer 3 consisting of co-doped zirconia based on oxygen ionic conductor, an active cathode layer 5 and a layer of a mixture of LSM and a ferrite as a transition layer 6 to a cathode current collector 7 of single phase LSM. The use of a metallic support instead of a Ni—YSZ anode support increases the mechanical strength of the support and secures redox stability of the support. The porous ferrite stainless steel ends in a pure electron conducting oxide so as to prevent reactivity between the metals in the active anode which tends to dissolve into the ferrite stainless steel causing a detrimental phase shift from ferrite to austenite structure.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: June 29, 2010
    Assignee: Technical University of Denmark
    Inventors: Peter Halvor Larsen, Mogens Bjerg Mogensen, Soren Linderoth, Kent Kammer Hansen, Weiguo Wang
  • Publication number: 20100142963
    Abstract: The invention relates to a method and a device for detecting at least one first input signal superimposed on at least one second signal, the method comprising the steps of providing said at least one first input signal superimposed on at least one second signal to at least one half-wave rectifier; transforming, in said at least one half-wave rectifier, said at least one first input signal superimposed on at least one second signal into a half-wave rectified signal; providing said half-wave rectified signal to an envelope detector; and transforming, in said envelope detector, said half-wave rectified signal into an envelope signal and wherein the at least one half-wave rectifier comprises at least one optoelectronic device. In this way, a simpler and cheaper method and/or device are provided for e.g. detecting a transmitted information signal superimposed on a high frequency carrier signal.
    Type: Application
    Filed: February 22, 2008
    Publication date: June 10, 2010
    Applicant: DTU, TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Idelfonso Tafur Monroy, Jorge Seoane Gomez
  • Publication number: 20100119648
    Abstract: The present invention provides a Leuconostoc bacterial strain for use in the diary industry to prevent the growth of pathogenic micro-organisms and thereby ensure the quality and safety of milk products produced by fermentation, including cheese, yoghurt, sour cream, buttermilk and kefir products. The Leuconostoc bacterial strain of the invention is a recombinant Leuconostoc carnosum strain, characterised by a lactose-positive phenotype with the ability to utilise lactose as sole carbon source. The invention provides a starter culture comprising the lactose-positive Leuconostoc carnosum of the invention for use in the manufacture of milk products, and milk products prepared with said Leuconostoc strain or said starter culture.
    Type: Application
    Filed: March 15, 2006
    Publication date: May 13, 2010
    Applicant: DTU, TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Ruhdal Jensen, Soren Helmark
  • Publication number: 20100119886
    Abstract: The present invention provides a method of producing a multilayer barrier structure in a solid oxide cell stack, comprising the steps of: -providing a metal interconnect; -applying a first metal oxide layer on said metal interconnect; -applying a second metal oxide layer on top of said first metal oxide layer; -applying a third metal oxide layer on top of said second metal oxide layer; -forming a solid oxide cell stack comprising said metal interconnect having said metal oxide layers thereon; and -reacting the metal oxide in said first metal oxide layer with the metal of said metal interconnect during the SOC-stack initialisation, and a solid oxide stack comprising an anode contact layer and support structure, an anode layer, an electrolyte layer, a cathode layer, a cathode contact layer, a metallic interconnect, and a multilayer barrier structure which is obtainable by the above method and through an initialisation step, which is carried out under controlled conditions for atmosphere composition and current
    Type: Application
    Filed: November 13, 2007
    Publication date: May 13, 2010
    Applicants: Technical University of Denmark, Topsoe Fuel Cell A/S
    Inventors: Karsten Agersted Nielsen, Søren Linderoth, Peter Vang Hendriksen, Asa Persson, Lars Mikkelsen, Niels Christiansen, Jørgen Gutzon Larsen
  • Publication number: 20100112407
    Abstract: The present invention relates to composite material suitable for use as an electrode material in a solid oxide cell, said composite material consist of at least two non-miscible mixed ionic and electronic conductors. Further provided is a composite material suitable for use as an electrode material in a solid oxide cell, said composite material being based on (Gd1-xSrx)1-sFe1-yCoyO3-? or (Ln1-xSrx)1-sFe1-yCioyO3-?(s equal to 0.05 or larger) wherein Ln is a lanthanide element, Sc or Y, said composite material comprising at least two phases which are non-miscible, said composite material being obtainable by the glycine nitrate combustion method. Said composite material may be used for proving an electrode material in the form of at least a two-phase system showing a very low area specific resistance of around 0.1 ?cm2 at around 600° C.
    Type: Application
    Filed: January 25, 2008
    Publication date: May 6, 2010
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Kent Kammer Hansen, Martin Sogaard, Mogens Mogensen
  • Publication number: 20100062312
    Abstract: The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst material, and wherein the overall thickness of the thin reversible cell is about 150 ?m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 ?m or less, and to a method for producing same.
    Type: Application
    Filed: November 23, 2007
    Publication date: March 11, 2010
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Halvor Larsen, Soeren Linderoth, Peter Vang Hendriksen
  • Publication number: 20100015473
    Abstract: A multi-layer coating for protection of metals and alloys against oxidation at high temperatures in general is provided. The invention utilizes a multi-layer ceramic coating on metals or alloys for increased oxidation-resistance, comprising at least two layers, wherein the first layer (3) which faces the metal containing surface and the second layer facing the surrounding atmosphere (4) both comprise an oxide, and wherein the first layer (3) has a tracer diffusion coefficient for cations Mm+, where M is the scale forming element of the alloy, and the second layer (4) has a tracer diffusion coefficient for oxygen ions O2? satisfying the following formula: wherein p(O2)m is the oxygen partial pressure in equilibrium between the metallic sub-strate and MaOb, p(O2)ex is the oxygen partial pressure in the reaction atmosphere, DM is the tracer diffusion coefficient of the metal cations Mm+ in the first layer (3), and Do is O tracer diffusion coefficient in the second layer (4).
    Type: Application
    Filed: April 24, 2007
    Publication date: January 21, 2010
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Vang Hendriksen, Lars Mikkelsen, Peter Halvor Larsen, Soeren Linderoth, Mogens Mogensen
  • Patent number: 7632068
    Abstract: The present invention relates to a design concept by which the power, loads and/or stability of a wind turbine may be controlled by typically fast variation of the geometry of the blades using active geometry control (e.g. smart materials or by embedded mechanical actuators), or using passive geometry control (e.g. changes arising from loading and/or deformation of the blade) or by a combination of the two methods. The invention relates in particular to a wind turbine blade, a wind turbine and a method of controlling a wind turbine.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: December 15, 2009
    Assignee: Technical University of Denmark
    Inventors: Dan Christian Bak, Thomas Buhl, Peter Fuglsang, Helge Aagaard Madsen, Flemming Rasmussen
  • Publication number: 20090285741
    Abstract: The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=?12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from the group consisting of oxides of Fe, Cu, V, Cr, Mn, and any mixtures thereof.
    Type: Application
    Filed: September 25, 2007
    Publication date: November 19, 2009
    Applicant: Technical University of Denmark
    Inventors: Soren Birk Rasmussen, Arkady Kustov, Rasmus Fehmann, Johannes Due-Hansen
  • Publication number: 20090280245
    Abstract: A printing or coating composition has a non-volatile liquid vehicle carrying a conductive polymer to be deposited on a substrate and is cleavable by heat or acidification without decomposition of said material, cleavage of said vehicle producing decomposition products that are more volatile than said vehicle and which can be evaporated to dry the composition. Suitably, that vehicle is a carbonic acid diester or a malonic acid diester, e.g. of the formula: wherein R2 is an organic substituent such that R2—OH is a volatile alcohol; R1 is an aliphatic or aromatic substituent of more than three carbon atoms such that is volatile; and R3 is C1-3 alkyl.
    Type: Application
    Filed: April 13, 2007
    Publication date: November 12, 2009
    Applicant: The Technical University of Denmark
    Inventors: Frederik Krebs, Mikkel Joergensen
  • Patent number: 7601183
    Abstract: The present invention provides a method for producing a reversible solid oxide fuel cell, comprising the steps of: —providing a metallic support layer; —forming a cathode precursor layer on the metallic support layer; —forming an electrolyte layer on the cathode precursor layer; —sintering the obtained multilayer structure; —impregnating the cathode precursor layer so as to form a cathode layer; and—forming an anode layer on top of the electrolyte layer. Furthermore, a reversible SOFC is provided which is obtainable by said method. The method advantageously allows for a greater choice of anode materials, resulting in more freedom in cell design, depending on the desired application.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: October 13, 2009
    Assignee: Technical University of Denmark
    Inventor: Peter Halvor Larsen
  • Publication number: 20090113897
    Abstract: The invention provides a method of making a magnetic regenerator for an active magnetic refrigerator, the method comprising: forming a magnetic regenerator from a slurry or a paste containing a magnetocaloric material the magnetic regenerator being formed to have plural paths therethrough for the flow of a heat transfer fluid; and varying the composition of the magnetocaloric material so that the magnetic transition temperature of the magnetic regenerator varies along the paths.
    Type: Application
    Filed: December 19, 2005
    Publication date: May 7, 2009
    Applicant: The Technical University of Denmark Anker Engelundsvej 1
    Inventors: Anders Reves Dinesen, Soren Linderoth, Nini Pryds, Anders Smith
  • Publication number: 20090049767
    Abstract: A tuned liquid damper comprising a housing with a hollow cavity within said housing and a first fluid which partially fills said hollow cavity. The inner surface of said hollow cavity is essentially spherical. The tuned liquid damper further comprises first fluid damping means arranged within the essentially spherical cavity of the housing. In this way, a tuned liquid damper is provided which has a response which is constant and independent of the orientation of the tuned liquid damper. Damping means are provided in order to be able to control the damping effect of the tuned liquid damper.
    Type: Application
    Filed: February 15, 2007
    Publication date: February 26, 2009
    Applicant: DTU, TECHNICAL UNIVERSITY OF DENMARK
    Inventor: Christos T. Georgakis
  • Publication number: 20080248361
    Abstract: A reversible SOFC monolithic stack is provided which comprises: 1) a first component which comprises at least one porous metal containing layer (1) with a combined electrolyte and sealing layer on the porous metal containing layer (1); wherein the at least one porous metal containing layer (1) hosts an electrode; 2) a second component comprising at least one porous metal containing layer (1) with a combined interconnect and sealing layer on the porous metal containing layer; wherein the at least one porous metal containing layers hosts an electrode. Further provided is a method for preparing a reversible solid oxide fuel cell stack. The obtained solid oxide fuel cell stack has improved mechanical stability and high electrical performance, while the process for obtaining same is cost effective.
    Type: Application
    Filed: August 31, 2006
    Publication date: October 9, 2008
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Halvor Larsen, Anders Smith, Mogens Mogensen, Soeren Linderoth, Peter Vang Hendriksen
  • Publication number: 20080166618
    Abstract: The present invention provides a method of producing a solid oxide fuel cell, comprising the steps of: forming an anode support layer; applying an anode layer on the anode support layer; applying an electrolyte layer on the anode layer; and sintering the obtained structure; wherein the anode support layer and/or the anode layer comprises a composition comprising doped zirconia, doped ceria and/or a metal oxide with an oxygen ion or proton conductivity, NiO and at least one oxide selected from the group consisting of AI2O3, TiO2, Cr2O3, Sc2O3, VOx, TaOx, MnOx, NbOx, CaO, Bi2O3, LnOx, MgCr2O4, MgTiO3, CaAI2O4, LaAIO3, YbCrO3, ErCrO4, NiTiO3, NiCr2O4, and mixtures thereof. According to the invention, a combination of nickel coarsening prevention due to specific Ni-particle growth inhibitors, and, at the same time, a strengthening of the ceramic structure of the anode support layer and/or the anode layer is achieved.
    Type: Application
    Filed: January 31, 2006
    Publication date: July 10, 2008
    Applicant: Technical University of Denmark
    Inventors: Peter Halvor Larsen, Charissa Chung, Mogens Mogensen