Patents Assigned to The Technical University of Denmark
  • Publication number: 20140295301
    Abstract: The present invention provides in embodiments a method for purification of inlet gas/liquid streams in a fuel cell or electrolysis cell, the fuel cell or electrolysis cell comprising at least a first electrode, an electrolyte and a second electrode, the method comprising the steps of: —providing at least one scrubber in the gas/liquid stream at the inlet side of the first electrode of the fuel cell or electrolysis cell; and/or providing at least one scrubber in the gas/liquid stream at the inlet side of the second electrode of the fuel cell or electrolysis cell; and —purifying the gas/liquid streams towards the first and second electrode; wherein the at least one scrubber in the gas/liquid stream at the inlet side of the first electrode and/or the at least one scrubber in the gas/liquid stream at the inlet side of the second electrode comprises a material suitable as an electrolyte material and a material suitable as an electrode material, and wherein the material suitable as an electrolyte material and a mat
    Type: Application
    Filed: August 17, 2012
    Publication date: October 2, 2014
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Sune D. Ebbesen, Mogens Bjerg Mogensen
  • Publication number: 20140287342
    Abstract: A high performance anode (fuel electrode) for use in a solid oxide electrochemical cell is obtained by a process comprising the steps of (a) providing a suitably doped, stabilized zirconium oxide electrolyte, such as YSZ, ScYSZ, with an anode side having a coating of electronically conductive perovskite oxides selected from the group consisting of niobium-doped strontium titanate, vanadium-doped strontium titanate, tantalum-doped strontium titanate and mixtures thereof, thereby obtaining a porous anode backbone, (b) sintering the coated electrolyte at a high temperature, such as 1200° C.
    Type: Application
    Filed: October 23, 2012
    Publication date: September 25, 2014
    Applicant: Technical University of Denmark
    Inventors: Mohammed Hussain Abdul Jabbar, Jens Høgh, Nikolaos Bonanos
  • Publication number: 20140287341
    Abstract: A novel modified anode/electrolyte structure for a solid oxide electrochemical cell is an assembly comprising (a) an anode consisting of a backbone of electronically conductive perovskite oxides selected from the group of doped strontium titanates and mixtures thereof, (b) a scandia and yttria-stabilised zirconium oxide electrolyte and (c) a metallic and/or a ceramic electrocatalyst in the shape of interlayers incorporated in the interface between the anode and the electrolyte. This assembly is first sintered at a given temperature and then at a lower temperature in reducing gas mixtures. These heat treatments resulted in a distribution of the metallic and/or ceramic interlayers in the electrolyte/anode backbone junction taking place.
    Type: Application
    Filed: October 23, 2012
    Publication date: September 25, 2014
    Applicant: Technical University of Denmark
    Inventors: Mohammed Hussain Abdul Jabbar, Jens Høgh, Eugen Stamate
  • Patent number: 8828196
    Abstract: The present invention provides a solid oxide cell stack, comprising: —at least two cells which each comprise a first electrode layer, an electrolyte layer, a second electrode layer, —gas passage ways, and—sealing components, wherein the sealing components comprise a glass component and a component comprising a metal oxide or metal oxide precursor, and wherein the component comprising the metal oxide or metal oxide precursor is located at least in between the glass component and a gas passage way.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: September 9, 2014
    Assignee: Technical University of Denmark
    Inventors: Nadja Lönnroth, Anne Hauch, Mogens Mogensen, Ming Chen
  • Publication number: 20140223730
    Abstract: The present invention provides an all ceramics solid oxide cell, comprising an anode layer, a cathode layer, and an electrolyte layer sandwiched between the anode layer and the cathode layer, wherein the electrolyte layer comprises doped zirconia and has a thickness of from 40 to 300 ?m; wherein the anode layer and the cathode layer both comprise doped ceria or both comprise doped zirconia; and wherein the multilayer structure formed of the anode layer, the electrolyte layer and the cathode layer is a symmetrical structure. The present invention further provides a method of producing said solid oxide cell.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: Technical University of Denmark
    Inventor: Peter Halvor Larsen
  • Patent number: 8802321
    Abstract: The present invention provides a graded multilayer structure, comprising a support layer (1) and at least 10 layers (2, 3) forming a graded layer, wherein each of the at least 10 layers (2, 3) is at least partially in contact with the support layer (1), wherein the at least 10 layers (2, 3) differ from each other in at least one property selected from layer composition, porosity and conductivity, and wherein the at least 10 layers (2, 3) are arranged such that the layer composition, porosity and/or conductivity horizontally to the support layer (1) forms a gradient over the total layer area.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: August 12, 2014
    Assignee: Technical University of Denmark
    Inventors: Peter Halvor Larsen, Peter Vang Hendriksen, Soren Linderoth, Mogens Mogensen
  • Patent number: 8790847
    Abstract: A method of producing a reversible solid oxide cell. The method includes the steps of tape casting an anode support layer on a support (1); tape casting an anode layer on a support (2); tape casting an electrolyte layer on a support (3); and either laminating said anode layer on top of said anode support layer; removing said support (2) from said anode layer; laminating said electrolyte layer on top of said anode layer; and sintering the multilayer structure; or laminating said anode layer on top of said electrolyte layer; removing said support (2) from said anode layer; laminating said anode support layer on top of said anode layer; and sintering the multilayer structure.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: July 29, 2014
    Assignee: Technical University of Denmark
    Inventors: Peter Halvor Larsen, Karen Brodersen
  • Publication number: 20140205498
    Abstract: The present invention relates to liquid filled light distributor comprising an elongated tubular body with a tube wall defining an in inner lumen filled with a liquid, said tubular body having—a proximal end closed by first closing means—a distal end closed by second closing means. Wherein the proximal end is arranged to be in optical communication with a light source and wherein the refractive index of the tube wall is n1 and the refractive index of the fluid is n2 and n1/n2<1 so that light from the light source travels along the longitudinal direction of the tubular body and that a part of the light is emitted through the tube wall along at least a part of the tubular body. Further a method of use for the liquid filled light distributor is provided.
    Type: Application
    Filed: August 16, 2012
    Publication date: July 24, 2014
    Applicant: Technical University of Denmark
    Inventor: Jimmy Bak
  • Patent number: 8766660
    Abstract: A method of measuring the efficiency with which a solar cell converts incident photons into charge carriers, including the following steps: (a) illuminating the solar cell with a broadband light source; (b) illuminating the solar cell with the broadband light source of which the intensity of a selected range of wavelengths has been reduced; (c) determining the change in the number of photons incident on the cell and the change in the number of charge carriers produced by the cell between steps (a) and (b); and (d) using the changes determined in step (c) to calculate the said efficiency measure.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: July 1, 2014
    Assignee: Technical University of Denmark
    Inventor: Frederik Christian Krebs
  • Patent number: 8741425
    Abstract: The present invention provides an all ceramics solid oxide cell, comprising an anode layer, a cathode layer, and an electrolyte layer sandwiched between the anode layer and the cathode layer, wherein the electrolyte layer comprises doped zirconia and has a thickness of from 40 to 300 ?m; wherein the anode layer and the cathode layer both comprise doped ceria or both comprise doped zirconia; and wherein the multilayer structure formed of the anode layer, the electrolyte layer and the cathode layer is a symmetrical structure. The present invention further provides a method of producing said solid oxide cell.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: June 3, 2014
    Assignee: Technical University of Denmark
    Inventor: Peter Halvor Larsen
  • Publication number: 20140147904
    Abstract: The present invention relates to a filtering apparatus and method for mixing a compound of solid and fluid phases, separating the phases and/or extracting fluid from the compound. One embodiment of the invention discloses a filtering apparatus comprising a first filter section accommodating a first group of filter members, and a second filter section accommodating a second group of filter members, a piping system providing pipelined fluid communication between the filter sections and between a filter section and said filter section's corresponding group of filter members, the piping system configured such that the filter members form filtered fluid openings of the filtering apparatus, and circulation means, such as a pump, configured for passing fluid in a forward flow and/or in a reverse flow between the filter sections. In particular the invention may be used for the mashing process in a beer brewing procedure.
    Type: Application
    Filed: August 13, 2012
    Publication date: May 29, 2014
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Stubbe, Preben Bøje Hansen
  • Publication number: 20140130839
    Abstract: The present invention concerns a structure useful for producing a thermoelectric generator, a thermoelectric generator comprising same and a method for producing same. A method for producing a structure useful for producing a thermoelectric generator, wherein the structure comprises at least one stripe of a n-type and at least one stripe of a p-type material, either separated by a stripe of an insulating material, or provided spatially separated on an insulating material, and comprising stripes of conductive material each connecting one n-type stripe with one p-type stripe, and not in electrical contact with each other, wherein the structure is free from polymeric substrates, wherein the method comprises the steps of co-forming the at least one stripe of a n-type and at least one stripe of a p-type material in a single manufacturing step; and forming connections between the at least one stripe of a n-type and at least one stripe of a p-type material by means of stripes of conductive material.
    Type: Application
    Filed: March 22, 2012
    Publication date: May 15, 2014
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Ngo Van Nong, Nini Pryds, Christian Robert Haffenden Bahl, Anders Smith, Soren Linderoth
  • Publication number: 20140010953
    Abstract: The present invention provides a method for producing a ceramic device in a low pO2 atmosphere, comprising the steps of: providing a composition comprising a base material and a transition metal; wherein the base material for the first layer is selected from the group consisting of zirconate, cerate, titanate, lanthanate, aluminate, doped zirconia and/or doped ceria, wherein the dopants are selected from the group of Ca, Ga, Sc, Y, and lanthanide elements; forming a first layer of said composition, wherein said first layer is an electrolyte layer; forming at least one electrode layer or electrode precursor layer on one side or both sides of said first layer; and sintering the multilayer structure in a low pO2 atmosphere; characterized in that: the amount of the transition metal is from 0.01 to 4 mol %, based on the composition of the first layer; the oxygen partial pressure pO2 is 10?14 Pa or less; and the sintering temperature is in the range of from 700 to 1600° C.
    Type: Application
    Filed: March 9, 2012
    Publication date: January 9, 2014
    Applicant: Technical University of Denmark
    Inventors: Severine Ramousse, Trine Klemensø, Halvor Peter Larsen
  • Patent number: 8616009
    Abstract: The invention provides a method of making a magnetic regenerator for an active magnetic refrigerator, the method comprising: forming a magnetic regenerator from a slurry or a paste containing a magnetocaloric material the magnetic regenerator being formed to have plural paths therethrough for the flow of a heat transfer fluid; and varying the composition of the magnetocaloric material so that the magnetic transition temperature of the magnetic regenerator varies along the paths.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: December 31, 2013
    Assignee: The Technical University of Denmark
    Inventors: Anders Reves Dinesen, Soren Linderoth, Nini Pryds, Anders Smith
  • Publication number: 20130344555
    Abstract: The present invention relates to a novel anaerobic, extreme thermophilic, ethanol high-yielding bacterium. The invention is based on the isolation of the bacterial strain referred to herein as “DTU01”, which produces ethanol as the main fermentation product, followed by acetate and lactate. The isolated organism is an extremely interesting and very promising organism for the establishment of a sustainable bioethanol production process. The invention further relates to a method for producing a fermentation product such as ethanol.
    Type: Application
    Filed: November 1, 2011
    Publication date: December 26, 2013
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Irini Angelidaki, Ana F. Tomás, Dimitar Borisov Karakashev
  • Publication number: 20130281312
    Abstract: The present invention is based, in part, on the identification of novel methods for defining predictive biomarkers of response to anti-cancer drugs.
    Type: Application
    Filed: August 19, 2011
    Publication date: October 24, 2013
    Applicants: DANA-FARBER CANCER INSTITUTE, INC., THE TECHNICAL UNIVERSITY OF DENMARK, CHILDREN'S MEDICAL CENTER CORPORATION, THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Andrea L. Richardson, Zhingang C. Wang, Daniel P. Silver, Zoltan Szallasi, Nicolai Juul Birkbak, Aron Charles Eklund
  • Publication number: 20130277669
    Abstract: The present invention provides: a method of preparing a coating ink for forming a zinc oxide electron transport layer, comprising mixing zinc acetate and a wetting agent in water or methanol; a coating ink comprising zinc acetate and a wetting agent in aqueous solution or methanolic solution; a method of preparing a zinc oxide electron transporting layer, which method comprises: i) coating a substrate with the coating ink of the present invention to form a film; ii) drying the film; and iii) heating the dry film to convert the zinc acetate substantially to ZnO; a method of preparing an organic photovoltaic device or an organic LED having a zinc oxide electron transport layer, the method comprising, in this order: a) providing a substrate bearing a first electrode layer; b) forming an electron transport layer according to the following method: i) coating a coating ink comprising an ink according to the present invention to form a film; ii) drying the film; iii) heating the dry film such that the zinc acetate i
    Type: Application
    Filed: September 27, 2011
    Publication date: October 24, 2013
    Applicant: The Technical University of Denmark
    Inventors: Frederik Christian Krebs, Roar Søndergard, Kion Norrman, Mikkel Jorgensen
  • Publication number: 20130236382
    Abstract: Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also revealed much higher alkali resistivity than that of commercial V2O5/WO3—TiO2 (VWT) SCR catalyst which is currently used for NOx abatement in stationary installations. Unique support properties like high surface area and surface acidity, which are not available in the commercial VWT catalyst, seem to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment.
    Type: Application
    Filed: August 26, 2011
    Publication date: September 12, 2013
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Putluru Siva Sankar Reddy, Anders Riisager, Rasmus Fehrmann
  • Publication number: 20130224620
    Abstract: A method for producing and reactivating a solid oxide cell stack structure by providing a catalyst precursor in at least one of the electrode layers by impregnation and subsequent drying after the stack has been assembled and initiated. Due to a significantly improved performance and an unexpected voltage improvement this solid oxide cell stack structure is particularly suitable for use in solid oxide fuel cell (SOFC) and solid oxide electrolysing cell (SOEC) applications.
    Type: Application
    Filed: November 11, 2010
    Publication date: August 29, 2013
    Applicants: TOPSOE FUEL CELL A/S, THE TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Vang Hendriksen, Lars Mikkelsen, Martin Søgaard, Jens Valdemar Thorvald Høgh, Wolff-Ragnar Kiebach, Kresten J.N.L. Jensen
  • Patent number: 8500842
    Abstract: A cermet anode structure obtainable by a process comprising the steps of: (a) providing a slurry by dispersing a powder of an electronically conductive phase and by adding a binder to the dispersion, in which said electronically conductive phase comprises a FeCrMx alloy, wherein Mx is selected from the group consisting of Ni, Ti, Nb, Ce, Mn, Mo, W, Co, La, Y, Al, and mixtures thereof, (b) forming a metallic support of said slurry of the electronically conductive phase, (c) providing a precursor solution of ceria, said solution containing a solvent and a surfactant, (d) impregnating the structure of step (b) with the precursor solution of step (c), (e) subjecting the resulting structure of step (d) to calcination, and (f) conducting steps (d)-(e) at least once.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: August 6, 2013
    Assignee: Technical University of Denmark
    Inventors: Peter Blennow, Mogens Mogensen