Patents Assigned to The University of Connecticut
  • Patent number: 10573605
    Abstract: A method of assessing vulnerability of Integrated Circuit (IC) can include: preparing a list of logic nets of the IC; obtaining rectangular segments from the logic nets; finding a milling exclusion area based on a covering wire; and superimposing the found milling exclusion area onto the rectangular segments of the logic nets. The milling exclusion area is an area that microprobing attack does not succeed without cutting off at least one of the rectangular segments.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: February 25, 2020
    Assignees: University of Florida Research Foundation, Incorporated, The University of Connecticut
    Inventors: Mark M. Tehranipoor, Domenic J. Forte, Navid Asadizanjani, Qihang Shi
  • Publication number: 20200039888
    Abstract: A multi-layer coating that allows arrest of contaminant infiltration includes at least one layer that is not very reactive to an infiltrating reactive species, and at least one highly reactive ceramic layer (HRC layer) containing materials that react to slow or arrest contaminant infiltration.
    Type: Application
    Filed: September 26, 2019
    Publication date: February 6, 2020
    Applicant: The University of Connecticut
    Inventors: Eric H. Jordan, Maurice Gell, Rishi Kumar, Chen Jiang
  • Publication number: 20200024152
    Abstract: The present disclosure relates to tungsten oxide composition. Specifically, the present disclosure relates to mesoporous tungsten oxide composition that is active for multiple reactions, including aromatic alkylation, alkene coupling, alkene cyclization, alkyne oxidation, alcohol dehydrogenation reactions.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 23, 2020
    Applicant: University of Connecticut
    Inventors: Steven L. Suib, Tharindu M.P.K. Kapuge, Wimalika R.K. Thalgaspitiya
  • Publication number: 20200024979
    Abstract: Thermal barrier coatings and methods to make such coatings present improved resistance to CMAS infiltration. The method for forming a thermal barrier coating includes applying a layer of the thermal barrier coating to a component having a surface, forming a plurality of first channels in the thermal barrier coating, and forming a plurality of second channels in the thermal barrier coating. The first channels extend through a thickness of the thermal barrier coating from an interface with the surface of the component to a free surface opposite the interface. The second channels are disposed between the free surface and the interface and extending lengthwise generally parallel to the free surface of the thermal barrier coating.
    Type: Application
    Filed: June 8, 2019
    Publication date: January 23, 2020
    Applicant: The University of Connecticut
    Inventors: Eric Jordan, Rishi Kumar
  • Publication number: 20200029012
    Abstract: An imaging method is provided that includes: (i) providing a microscope having a lens and an autofocusing camera positioned adjacent to the microscope; (ii) positioning an illumination source adjacent to the microscope; (iii) moving a sample to a predefined offset position and illuminating the sample; (iv) acquiring an image of the illuminated sample via the autofocusing camera; and (v) utilizing a convolution neural network to identify an in-focus position of the sample. The convolution neural network may further include an input layer, output layer, and at least one hidden layer situated between the input and output layers. The hidden layer(s) may be selected from a group consisting of a convolution layer, pooling layer, normalization layer, fully connected layer, and a combination thereof. The convolution neural network may be trained to accurately define the weight to be applied to the layer(s).
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Applicant: University of Connecticut
    Inventor: Guoan Zheng
  • Patent number: 10537594
    Abstract: The present disclosure relates to, inter alia, compositions and kits comprising an asialoglycoprotein covalently attached to a polycation, and functional mammalian mitochondria that are at least partially purified and are electrostatically bound to the AsG-polycation molecule; as well as methods of their preparation and use.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: January 21, 2020
    Assignee: University of Connecticut
    Inventors: George Y Wu, Catherine H Wu, Nidhi Gupta
  • Patent number: 10517565
    Abstract: An imaging system includes a primary probe that includes a substrate; an ultrasound transducer disposed in the substrate to irradiate a first tissue with an ultrasound frequency; a first near infrared source to irradiate the first tissue with a first near infrared wavelength; and a first light detector to detect a first detected wavelength from the first tissue; an auxiliary probe that includes a second near infrared source configured to irradiate a second tissue with a second near infrared wavelength; and a second light detector configured to detect a second detected wavelength from the second tissue. The system also can include an optical tomography device; an ultrasound device; and a processor unit. A process for imaging includes disposing the primary probe on a first tissue, disposing an auxiliary probe on a second tissue, irradiating the first tissue, and irradiating the second tissue to produce an image of the first tissue.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: December 31, 2019
    Assignee: THE UNIVERSITY OF CONNECTICUT
    Inventor: Quing Zhu
  • Patent number: 10520397
    Abstract: Multiple methods and corresponding apparatuses for efficient and reliable defect diagnosis in components of mechanical systems, are described. According to one aspect, multi-scale enveloping-order spectrogram is used to diagnose, or detect, defects in a moving component of a mechanical system. According to another aspect, defect identification and diagnosis in a motor is performed based on spectral characteristics of motor current envelope. According to yet another aspect, a logic rule model, employing classification of features associated with single- or multi-sensor data, is employed for diagnosis of defects in components of mechanical systems.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 31, 2019
    Assignees: University of Connecticut, Canrig Drilling Technology Ltd.
    Inventors: Robert X. Gao, Jinjiang Wang, Ruqiang Yan, Brian Charles Ellis, Boone Elbert Smith, Jose Abelardo Sanchez Puente
  • Patent number: 10501801
    Abstract: Described herein are methods of identifying tumor-specific epitopes from the cancer tissue DNA of cancer patients using both DNA sequencing and bioinformatics techniques. The identification of tumor-specific epitopes provides pharmaceutical compositions with a limited number of tumor-specific peptides suitable for personalized genomics-driven immunotherapy of human cancer. Specifically disclosed herein is a novel index called the Differential Agretopic Index (DAI) for the epitope which allows prediction of whether immunization with a particular epitope will be protective against the tumor. Pharmaceutical compositions and methods of administration are also included.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 10, 2019
    Assignee: UNIVERSITY OF CONNECTICUT
    Inventors: Pramod K. Srivastava, Ion Mandoiu, Fei Duan
  • Patent number: 10505853
    Abstract: Systems and methods for integrating ultra-fast programmable networks in microgrid are disclosed to provide flexible and easy-to-manage communication solutions, thus enabling resilient microgrid operations in face of various cyber and physical disturbances. The system is configured to establish a novel software-defined networking (SDN) based communication architecture which abstracts the network infrastructure from the upper-level applications to significantly expedite the development of microgrid applications, develop three functions of the SDN controller for microgrid emergency operations, including time delay guarantee, failover reconfiguration and rate limit and create a hardware-in-the-loop cyber-physical platform for evaluating and validating the performance of the presented architecture and control techniques.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: December 10, 2019
    Assignee: University of Connecticut
    Inventors: Peng Zhang, Bing Wang, Peter B. Luh, Lingyu Ren, Yanyuan Qin
  • Patent number: 10488397
    Abstract: Improved sensor assemblies are provided. More particularly, the present disclosure provides improved and highly advantageous metal oxide based sensor assemblies configured to sense low concentration of specific gases, and related methods of use. The present disclosure provides improved physical forms of metal oxide films (e.g., WOx films, CeOx films). The exemplary metal oxide films can be fabricated by a Reactive Spray Deposition Technology (RSDT). The highly advantageous films/materials can be utilized in sensor assemblies to detect simple chemical components of the breath that correlate with human health conditions (e.g., the presence of acetone in diabetic patients). These films/materials demonstrate improved thermal stability under the sensor's operating conditions, as well as improved sensitivity to low concentration of the analyte, selectivity and quick responsiveness.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: November 26, 2019
    Assignee: University of Connecticut
    Inventors: Radenka Maric, Rishabh Jain
  • Patent number: 10477097
    Abstract: Instruments, assemblies and methods are provided for undertaking imaging techniques (e.g., microscopic imaging techniques). The present disclosure provides improved imaging techniques, equipment and systems. More particularly, the present disclosure provides advantageous microscopy/imaging assemblies with single-frame sample autofocusing using multi-LED illumination. The present disclosure provides for assemblies and methods for single-frame rapid sample autofocusing without a z-scan. Potential applications for the disclosed assemblies/methods include, without limitation, whole slide imaging, optical metrology, wafer inspection, DNA sequencing and other high-throughput imaging applications where the sample may need to be scanned over a large field of view. The assemblies/methods advantageously utilize multiple LEDs for sample illumination. A captured image includes multiple copies of the sample, and one can recover the distance between these copies. The distance is directly related to the defocus distance.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: November 12, 2019
    Assignee: University of Connecticut
    Inventor: Guoan Zheng
  • Patent number: 10472286
    Abstract: Embodiments of a microstructure that allows arrest of contaminant infiltration includes an inter layer and at least one highly reactive ceramic layer. The inter layer is not reactive to an infiltrating reactive species. The HRC layer includes materials that react with a reactive contaminant species to slow or arrest infiltration of such contaminant species.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: November 12, 2019
    Assignee: UNIVERSITY OF CONNECTICUT
    Inventors: Eric H Jordan, Maurice Gell, Rishi Kumar, Chen Jiang
  • Patent number: 10469833
    Abstract: A wearable 3D augmented reality display and method, which may include 3D integral imaging optics.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: November 5, 2019
    Assignees: THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA, THE UNIVERSITY OF CONNECTICUT
    Inventors: Hong Hua, Bahram Javidi
  • Patent number: 10464993
    Abstract: The present invention relates to a therapeutic polypeptide and methods for its creation and use for modulating an immune response in a host organism in need thereof. In particular, the invention relates to the administration to an organism in need thereof, of an effective amount of a pre-coupled polypeptide complex comprising a lymphokine polypeptide portion, for example IL-15 (SEQ ID NO: 5, 6), IL-2 (SEQ ID NO: 10, 12) or combinations of both, and an interleukin receptor polypeptide portion, for example IL-15Ra (SEQ ID NO: 7, 8), IL-2Ra (SEQ ID NO: 9, 11) or combinations of both, for augmenting the immune system in, for example, cancer, SCID, AIDS, or vaccination; or inhibiting the immune system in, for example, rheumatoid arthritis, or Lupus. The therapeutic complex of the invention surprisingly demonstrates increased half-life, and efficacy in vivo.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: November 5, 2019
    Assignee: UNIVERSITY OF CONNECTICUT
    Inventors: Leo Lefrancois, Thomas A. Stoklasek
  • Patent number: 10458472
    Abstract: In one aspect, the present disclosure provides a sliding bearing system, comprising (a) a base plate, (b) one or more force measuring sensors, wherein each of the one or more force measuring sensors includes a top surface and a bottom surface, and wherein the bottom surface of each of the one or more force measuring sensors is coupled to the base plate, and (c) a first sliding surface coupled to the top surface of each of the one or more force measuring sensors.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: October 29, 2019
    Assignee: University of Connecticut
    Inventors: Arash Esmaili Zaghi, Kevin McMullen, Michael V. Hoagland
  • Patent number: 10457726
    Abstract: Described herein is an isolated antibody or antigen-binding fragment including a heavy chain variable region including three heavy chain complementary determining regions (HCDRs), wherein the sequence of HCDR1 is GYRLSELS (SEQ ID NO: 1), the sequence of HCDR2 is ISGWDGNT (SEQ ID NO: 2), and the sequence of HCDR3 is ARASGYNY(SEQ ID NO: 3), wherein the isolated antibody or antigen-binding fragment specifically binds human HSP90, specifically HSP90 beta. Also included are detection and therapeutic methods using the isolated antibodies or antigen-binding fragments.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 29, 2019
    Assignee: UNIVERSITY OF CONNECTICUT
    Inventors: Kevin P. Claffey, Charan Devarakonda, Daniel Kita
  • Publication number: 20190324084
    Abstract: Systems and methods for fault detection and diagnosis in a machine. The method includes selecting fault characteristic frequencies of faults, implementing the fault characteristic frequencies as modulating signals, receiving a feedback signal from at least one sensor associated with a machine, applying active modulation using the modulating signals to the feedback signal to obtain modulated signals, and monitoring for a low-frequency fault indicative component from the modulated signals.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 24, 2019
    Applicant: University of Connecticut
    Inventors: Ali M. Bazzi, Yiqi Liu, Bryan Davis
  • Patent number: 10392411
    Abstract: Described herein is an enzyme-mediated approach to bioconjugation at nanoparticle (NP) surfaces. This process is enabled by a new synthetic linker compatible with the covalent attachment of alkyne modified substrates, including dyes, peptides and nucleic acids. The methods described herein specifically allow for the linkage of molecules to a DNA-functionalized nanoparticle surface. Enzymatic ligation of molecules to the terminal hydroxyl group of DNA using T4 DNA ligase is achieved through incorporation of a single monophosphate on the approaching substrate. In contrast to previous strategies, the linkers disclosed herein are compatible with alkyne modified molecules of a variety of sizes and charges indicating that the ligase minimally requires the monophosphate and the incoming hydroxyl for conjugation to be successful.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: August 27, 2019
    Assignee: University of Connecticut
    Inventor: Jessica Lynn Rouge
  • Patent number: 10383708
    Abstract: Advantageous dental analogs for dental restorations and related methods of use are provided. The present disclosure provides improved analog members for use in fabricating dental implant-supported restorations, and related methods of use. More particularly, the present disclosure provides advantageous systems/methods for the design and use of protection analog members configured to protect cuff portions of coping members during the fabrication of dental restorations. The improved analog members include an added vertical rim or collar to contact and/or protect the cuff portion of coping members when an end of the analog member is screwed/mounted into place into an end of the coping member. This way, the resin added during fabrication will not contact/adhere to the cuff portion allowing a proper seating of the finished fixed implant-supported prosthesis. Use of the improved analog member also can eliminate scratches/damage to the cuff portion (e.g., during trimming and polishing).
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: August 20, 2019
    Assignee: University of Connecticut
    Inventor: Avinash S. Bidra