Patents Assigned to The University of Notre Dame du Lac
  • Patent number: 11105013
    Abstract: An electrolyte and a method to electroplate a metal on a substrate using the electrolyte are described. The electrolyte includes an imidazolium compound, a metal salt, and water. The imidazolium compound has formula (I) wherein R1, R2, R3, R4, and R5 are each independently selected from an H atom and an organic radical. L? is a compatible anion. The metal salt can include but is not limited to salts of the metals Li, Mg, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Bi, La, Ce, Al, Ag, Au, Ga, V, In, Nb, Mo, and W.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: August 31, 2021
    Assignees: Neo Industries LLC, University of Notre Dame Du Lac, Ionic Research Technologies LLC
    Inventors: Patrick Benaben, Joan Brennecke, Edward Maginn, Mauricio Quiroz-Guzman
  • Patent number: 11053962
    Abstract: A plasma plate is used to minimize drag of a fluid flow over an exposed surface. The plasma plate includes a series of plasma actuators positioned on the surface. Each plasma actuator is made of a dielectric separating a first electrode exposed to a fluid flow and a second electrode separated from the fluid flow under the dielectric. A pulsed direct current power supply provides a first voltage to the first electrode and a second voltage to the second electrode. The series of plasma actuators is operably connected to a bus which distribute powers and is positioned to minimize flow disturbances. The plasma actuators are arranged into a series of linear rows such that a velocity component is imparted to the fluid flow.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: July 6, 2021
    Assignee: University of Notre Dame du Lac
    Inventors: Thomas C. Corke, Flint O. Thomas
  • Patent number: 11056329
    Abstract: An electrokinetically pumped sheath flow nanospray interface for capillary electrophoresis coupled to negative mode electrospray mass spectrometer is described. At this interface, application of an electric field generates electro-osmotic flow at the interior of a glass emitter having an orifice. Electroosmotic flow pumps liquid around the distal tip of the separation capillary, ensheathing analyte into the electrospray electrolyte. In negative ion mode, negative potential applied to an untreated emitter drives sheath flow away from the emitter orifice, decreasing the stability and efficiency of the spray. In contrast, when the interior of the electrospray emitter is grafted with aminoalkylsilanes, the amines have a positive charge, which reverses electroosmosis and generates stable sheath flow to the emitter orifice under negative potential. Limits of detection were about 150 to 900 attomoles injected.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: July 6, 2021
    Assignee: University of Notre Dame du Lac
    Inventors: Norman Dovichi, Scott Sarver, Nicole Schiavone, Zhenbin Zhang, Liangliang Sun
  • Publication number: 20210204122
    Abstract: Devices and techniques for authenticating wireless communications are disclosed. In some embodiments, the techniques can be performed by a network access point that includes a receiver to receive a wireless signal from a remote device. The network access point can also include a processor to calculate polarization data for the wireless signal and to determine whether the polarization data includes at least one characteristic that corresponds to a characteristic of a stored authenticated polarization signature.
    Type: Application
    Filed: June 19, 2019
    Publication date: July 1, 2021
    Applicant: University of Notre Dame du Lac
    Inventors: Thomas G. Pratt, Joseph Lawrence Loof, Eric Jesse
  • Publication number: 20210198254
    Abstract: Described herein are compounds and compositions, and methods of making and their use as effective agents against mycobacterial infections.
    Type: Application
    Filed: December 28, 2020
    Publication date: July 1, 2021
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Marvin J. MILLER, Garrett C. MORASKI
  • Patent number: 11016079
    Abstract: Disclosed are methods, compositions, and devices for an integrated, heterogeneous ion-exchange membrane-based plastic microfluidic biochip platform that can be used to detect multiple diagnostic markers present in real samples. Its various components can be easily integrated in a modular fashion for different applications. Automated control allows sequential and dynamic activation of different components on the chip. The integrated platform consists of three units and is designed to execute the following functions: (i) separation of the target biomolecules from the real sample, (ii) localizing and concentrating the targeted molecules at a specific location in the microfluidic chip, and (iii) detection of the targeted molecules using hybridization/docking events against a complementary ssDNA oligoprobe sequence or a specific antibody.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: May 25, 2021
    Assignee: University of Notre Dame du Lac
    Inventors: Zdenek Slouka, Satyajyoti Senapati, Sunny S. Shah, Hsueh-Chia Chang
  • Patent number: 11014891
    Abstract: A compound is provided, comprising: an Fe(III)-binding or an Fe(III)-bound siderophore; one or more optional linker covalently bound to the siderophore; a drug; and an Fe(III) to Fe(II) reduction triggered linker bound to the drug and the linker or, if no linker is present, then bound to the drug and the siderophore. Compositions and methods including the compound are also provided.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: May 25, 2021
    Assignee: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Marvin J. Miller, Cheng Ji
  • Publication number: 20210138089
    Abstract: Embodiments of the present disclosure provide a nanoparticle based platform, and nanoallergens for identifying, evaluating and studying allergen mimotopes as multiple copies of a single mimotope or various combinations on the same particle. The nanoparticle is extremely versatile and allows multivalent binding to IgEs specific to a variety of mimotopes, simulating allergen proteins. Nanoparticles can include various molecular ratios of components. For example, the nanoallergens can include about 0.1-40% mimotope-lipid conjugate and about 60-99.9% lipid. The mimotope-lipid conjugate includes a mimotope, a first linker, and lipid molecule. Nanoallergens can be used in in vitro and in vivo applications to identify a specific patient's sensitivity to a set of epitopes and predict a symptomatic clinical response, identify allergen epitopes through blind screening peptide sequences from allergen protein, and in a clinical application similar to a scratch test.
    Type: Application
    Filed: December 18, 2020
    Publication date: May 13, 2021
    Applicant: University of Notre Dame du Lac
    Inventors: Zihni Basar BILGICER, Peter Edward DEAK, Tanyel KIZILTEPE BILGICER, Jared Francis STEFANICK, Jonathan Darryl ASHLEY
  • Publication number: 20210115157
    Abstract: The invention provides a strategy for site specific covalent modification of antibodies using a specialized targeting covalent heterobivalent ligand (cHBL), and corresponding design for a covalent heterobivalent inhibitor (cHBI) that can be used to prevent Immunoglobulin E (IgE) mediated allergic reactions triggered by drug molecules, according to one embodiment. These molecules contain four important components: (1) an IgE antigen binding site (ABS) ligand that can be a mimotope for the allergen protein, a small molecule, or a peptidomimetic, (2) an appropriate linker, which can be any flexible or rigid chemical linker, providing spacing between the ABS binder and the other moieties, (3) a nucleotide binding site (NBS) ligand, and (4) a reactive moiety to form a covalent link with an amino acid side chain of target IgE antibodies.
    Type: Application
    Filed: December 18, 2020
    Publication date: April 22, 2021
    Applicant: University of Notre Dame du Lac
    Inventors: Zihni Basar BILGICER, Peter Edward DEAK, Tanyel KIZILTEPE BILGICER, Michael William HANDLOGTEN, Jonathan Darryl ASHLEY
  • Patent number: 10983035
    Abstract: Exosomes carry microRNA biomarkers, occur in higher abundance in cancerous patients than in healthy ones, and because they are present in most biofluids, including blood and urine, can be obtained non-invasively. Standard laboratory techniques to isolate exosomes are expensive, time-consuming, provide poor purity, and recover on the order of 25% of the available exosomes. We present a new microfluidic technique to simultaneously isolate exosomes and preconcentrate them by electrophoresis using a high transverse local electric field generated by ion-depleting ion-selective membrane. We use pressure-driven flow to deliver an exosome sample to a microfluidic chip such that the transverse electric field forces them out of the cross flow and into an agarose gel which filters out unwanted cellular debris while the ion-selective membrane concentrates the exosomes through an enrichment effect. We efficiently isolated exosomes from 1×PBS buffer, cell culture media and blood serum.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 20, 2021
    Assignee: University of Notre Dame du Lac
    Inventors: Steven Marczak, Zeinab Ramshani, Reginald Hill, David B. Go, Hsueh-Chia Chang, Satyajyoti Senapati
  • Patent number: 10976282
    Abstract: Herein are described an instrument and a method for using the same. The instrument comprises a fluid channel fluidly connected to at least a first fluid reservoir and a second fluid reservoir; a counter electrode (CE), a reference electrode (RE), and a working electrode (WE); and a potentiostat. The CE, RE, and WE are all disposed within the fluid channel; the potentiostat is isolated from earth ground by at least one isolator and is powered by a floating power supply; and the CE, RE, and WE are each electrically connected to the potentiostat.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: April 13, 2021
    Assignee: The University of Notre Dame du Lac
    Inventors: Paul Bohn, Lawrence Zaino, III
  • Patent number: 10957045
    Abstract: Optimizations are provided for segmenting tissue objects included in an ultrasound image. Initially, raw pixel data is received. Here, each pixel corresponds to ultrasound information. This raw pixel data is processed through a first fully convolutional network to generate a first segmentation label map. This first map includes a first set of objects that have been segmented into a coarse segmentation class. Then, this first map is processed through a second fully convolutional network to generate a second segmentation label map. This second map is processed using the raw pixel data as a base reference. Further, this second map includes a second set of objects that have been segmented into a fine segmentation class. Then, a contour optimization algorithm is applied to at least one of the second set of objects in order to refine that object's contour boundary. Subsequently, that object is identified as corresponding to a lymph node.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: March 23, 2021
    Assignees: University of Notre Dame du Lac, Honk Kong Polytechnic University, Chinese University of Hong Kong
    Inventors: Danny Ziyi Chen, Yizhe Zhang, Lin Yang, Michael Tin-Cheung Ying, Anil Tejbhan Ahuja
  • Patent number: 10955380
    Abstract: A nanoscale protein-sensing platform with a non-equilibrium on-off switch that employs dielectrophoretic and hydrodynamic shear forces to overcome these thermodynamic limitations with irreversible kinetics. The detection sensitivity is achieved with complete association of the antibody-antigen-antibody (Ab-Ag-Ab) complex by precisely and rapidly assembling carbon nanotubes (CNT) across two parallel electrodes via sequential DC electrophoresis and dielectrophoresis (DEP), and with single-CNT electron tunneling conductance. The high selectivity is achieved with a critical hydrodynamic shear rate between the activated dissociation shear rates of target and non-target linkers of the aligned CNTs.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: March 23, 2021
    Assignee: University of Notre Dame du Lac
    Inventors: Hsueh-Chia Chang, Diya Li, Satyajyoti Senapati
  • Patent number: 10947320
    Abstract: The invention provides a strategy for site specific covalent modification of antibodies using a specialized targeting covalent heterobivalent ligand (cHBL), and corresponding design for a covalent heterobivalent inhibitor (cHBI) that can be used to prevent Immunoglobulin E (IgE) mediated allergic reactions triggered by drug molecules, according to one embodiment. These molecules contain four important components: (1) an IgE antigen binding site (ABS) ligand that can be a mimotope for the allergen protein, a small molecule, or a peptidomimetic, (2) an appropriate linker, which can be any flexible or rigid chemical linker, providing spacing between the ABS binder and the other moieties, (3) a nucleotide binding site (NBS) ligand, and (4) a reactive moiety to form a covalent link with an amino acid side chain of target IgE antibodies.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: March 16, 2021
    Assignee: University of Notre Dame du Lac
    Inventors: Zihni Basar Bilgicer, Peter Edward Deak, Tanyel Kiziltepe Bilgicer, Michael William Handlogten, Jonathan Darryl Ashley
  • Patent number: 10938329
    Abstract: Systems and methods for generating electricity from low grade heat. The system and method may be a closed loop. When a liquid mixture of salt, water, and an ion-stripping liquid is heated using the low grade heat, water dissolves more readily into the ISL, due to the increased solubility of the water in the ISL, at the increased temperature. The salt remains in a high-salinity aqueous phase that separates from the ISL phase. Upon cooling of the ISL phase, a nearly pure water phase can be separated therefrom. This low salinity water phase and the high salinity water phase can be fed to any of various processes for generating electricity from a salinity gradient, such as pressure retarded osmosis or reverse electro-dialysis. Low and high salinity water exiting the power generating portion of the process can be recycled, to reform the original liquid stream, upon recombination with the ISL.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: March 2, 2021
    Assignee: University of Notre Dame Du Lac
    Inventors: Tengfei Luo, Shirui Luo
  • Patent number: 10919888
    Abstract: Described herein are compounds and compositions, and methods of making and their use as effective agents against mycobacterial infections.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: February 16, 2021
    Assignee: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Marvin J. Miller, Garrett C. Moraski
  • Patent number: 10913737
    Abstract: Embodiments relate to the field of chemistry and biochemistry, and, more specifically, to imidazopyridine compounds, synthesis thereof, and methods of using same. Disclosed herein are various imidazo[1,2-a]pyhdine compounds and methods of using the novel compounds to treat or prevent tuberculosis in a subject or to inhibit fungal growth on plant species. Other embodiments include methods of synthesizing imidazo[1,2-a]pyridine compounds, such as the disclosed imidazo[1,2-a]pyridine compounds.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: February 9, 2021
    Assignee: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Marvin J. Miller, Garrett C. Moraski, Lowell D. Markley, George E. Davis
  • Patent number: 10908094
    Abstract: The described BPE-enabled device includes two separated chambers which perform detection and reporting independently. Analytical reaction of a target molecule in the analytical cell is coupled to and monitored by an electrochromic reaction in the reporting cell. The color change in the reporting cell can be determined spectrophotometrically by RGB analysis of a CCD image acquired via smartphone. This detection method provides a linear response and a low limit of detection due to the redox cycling behavior in both chambers. The BPE based electrochromic detector can be modified for sensing of multiple analytes by integrating three or more sets of detection chemistries into one single device. Multiple analytes with different concentrations can be detected within this device simultaneously.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: February 2, 2021
    Assignee: University of Notre Dame du Lac
    Inventors: Paul W. Bohn, Wei Xu, Kaiyu Fu, Chaoxiong Ma
  • Patent number: 10910573
    Abstract: A diode and logic gate comprising cells is disclosed. A method of making the diode and logic gate comprising cells is disclosed.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: February 2, 2021
    Assignee: The University of Notre Dame du Lac
    Inventor: Pinar Zorlutuna
  • Publication number: 20210009583
    Abstract: A series of imidazopyridine and pyrazolopyridine compounds is provided in which carbon hydrogen bonds have been replaced with isotopic carbon-deuterium bonds, syntheses thereof, compositions thereof, and methods of using such compounds and compositions. Various embodiments provide methods of killing and/or inhibiting the growth of M. tuberculosis and/or M. avium, and methods of treating, preventing, and/or ameliorating M. tuberculosis, M. avium or other mycobacterial infections in a subject like M. leprae or M. ulcerans.
    Type: Application
    Filed: March 11, 2019
    Publication date: January 14, 2021
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Rui LIU, Marvin J. MILLER, Garrett C. MORASKI