Patents Assigned to Titanium Metals Corporation
  • Patent number: 11905576
    Abstract: A method of vacuum arc remelting an ingot provided in a crucible assembly having an electrode includes generating a rotating magnetic field normal to a longitudinal axis of the ingot and localized to an arc region during remelting. The rotating magnetic field interacts with a melting current to produce a rotating arc directed radially outward.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: February 20, 2024
    Assignee: TITANIUM METALS CORPORATION
    Inventors: Ashish D. Patel, Jeremy L Sensenig, Robert James McFarland, Jr., James Leroy Phillips
  • Patent number: 11708630
    Abstract: A titanium alloy composition is provided. In weight percent (wt. %), the alloy includes 5.7 to 8.0% vanadium, 0.5 to 1.75% aluminum, 0.25 to 1.5% iron, 0.1 to 0.2% oxygen, up to 0.15% silicon, up to 0.1% carbon and less than 0.03% nitrogen is provided. In one form, the titanium alloy has a 0.2% yield strength between 600 to 850 MPa, an ultimate tensile strength between 700 to 950 MPa, a percent elongation to failure between 20 to 30%, a percent reduction in area between 40 to 80%, a Charpy U-notch impact energy between 30 to 70 J, and/or a Charpy V-notch impact energy between 40 to 150 J.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: July 25, 2023
    Assignee: Titanium Metals Corporation
    Inventors: Roger Owen Thomas, Steven James, Paul Garratt, Matthew Thomas
  • Publication number: 20230063778
    Abstract: An alpha-beta titanium alloy and method of manufacture includes forming an alpha-beta product from a titanium alloy with a composition in weight percent (wt. %) including 5.7-7.5 wt. % Al, 0.8-4.2 wt. % Mo, 0.0-3.0 wt. % Nb, 0.1-3.5 Sn, 0.1-3.0 wt. % Zr, 0.1-0.35 wt. % Si, 0.05-0.25 wt. % O, with the remainder being Ti and incidental impurities, and then heat treating the alpha-beta product with a first heat treatment step including a first temperature and a first time, a second heat treatment step including a second temperature and a second time, and a third heat treatment step including a third temperature less than the second temperature and a third time greater than the second time.
    Type: Application
    Filed: August 24, 2022
    Publication date: March 2, 2023
    Applicant: Titanium Metals Corporation
    Inventor: John C. FANNING
  • Publication number: 20220411895
    Abstract: A method of vacuum arc remelting an ingot provided in a crucible assembly having an electrode includes generating a rotating magnetic field normal to a longitudinal axis of the ingot and localized to an arc region during remelting. The rotating magnetic field interacts with a melting current to produce a rotating arc directed radially outward.
    Type: Application
    Filed: September 2, 2022
    Publication date: December 29, 2022
    Applicant: Titanium Metals Corporation
    Inventors: Ashish D. PATEL, Jeremy L. SENSENIG, Robert James MCFARLAND, Jr., James Leroy PHILLIPS
  • Publication number: 20220350294
    Abstract: A control system includes a vision system including an imaging device and a VAR monitoring system configured to determine a power adjustment phase of the VAR process based on the images from the vision system and a process parameter. The VAR monitoring system includes a vision analysis module configured to analyze the images from the vision system to detect a melt marker based on a remelt image process model, and a prediction module configured to predict an operational characteristic of the VAR process that is associated with the power adjustment relative to a melt marker location and a remelt prediction model. The VAR monitoring system is configured to initiate the power adjustment phase in response to the melt marker satisfying a predetermined melt marker condition, the operational characteristic of the VAR process satisfying a predetermined operational condition, or a combination thereof.
    Type: Application
    Filed: April 28, 2022
    Publication date: November 3, 2022
    Applicant: TITANIUM METALS CORPORATION
    Inventors: Nir HERSCOVICI, Ashish D. PATEL
  • Patent number: 11434544
    Abstract: A vacuum arc remelting system for forming an ingot from an electrode is provided that includes a crucible assembly configured to accommodate the electrode and the ingot, an electromagnetic energy source arranged about the crucible assembly, and a lift mechanism operable to move the electromagnetic energy source along a longitudinal axis of the crucible assembly. A magnetic field generated by the electromagnetic energy source is localized to an arc region during remelting, and in one form, the electromagnetic energy source is a coil assembly having a magnetic core and a plurality of coil pairs wrapped around the core, wherein the coil assembly is operable to generate a magnetic field from the coil based on electric current flowing in the plurality of coil pairs.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: September 6, 2022
    Assignee: Titanium Metals Corporation
    Inventors: Ashish D. Patel, Jeremy L. Sensenig, Robert James McFarland, Jr., James Leroy Phillips
  • Patent number: 11352687
    Abstract: Titanium alloys with an improved and unexpected combination of corrosion resistance, strength, ductility and toughness are provided. The titanium alloys contain molybdenum, nickel, zirconium, iron, and oxygen as alloying agents. Also the titanium alloys may be subjected to thermal treatments. The titanium alloys can include molybdenum between 3.0 to 4.5 wt. %, nickel between 0.1 to 1.0 wt. %, zirconium between 0.1 to 1.5 wt. %, iron between 0.05 to 0.3 wt. %, oxygen between 0.05 to 0.25 wt. %, and a balance of titanium and unavoidable impurities. The titanium alloys can have a yield strength between 550 to 750 MPa, a tensile strength between 700 to 900 MPa, an elongation to failure between 25 to 35%, a reduction in area between 55 to 70%, and a corrosion rate between 0.5 to 2.5 mils per year when exposed to 1 wt. % boiling hydrochloric acid per the ASTM G-31 test method.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: June 7, 2022
    Assignee: Titanium Metals Corporation
    Inventors: Roger Owen Thomas, James S. Grauman, Paul Garratt, James G. Miller
  • Patent number: 11154919
    Abstract: A device for reforming a vessel cavity is provided that includes a central shaft, a central gear coupled to the central shaft, and a plurality of roller gears coupled to the central gear, with each of the plurality of roller gears having a central portion. A proximal support member couples the plurality of roller gears and at least one of the central gear and the central shaft. A plurality of rollers is also provided, each of the plurality of rollers connected to the central portion of each of the plurality of roller gears. In one form, at least one idler member is disposed between the plurality of rollers. A distal support member couples the plurality of rollers and at least one of the central gear and a translation member. Also, a stationary member is secured to a distal portion of the vessel cavity.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: October 26, 2021
    Assignee: Titanium Metals Corporation
    Inventors: Greg Johnson, Kaveh Golestaneh
  • Publication number: 20210180866
    Abstract: An electron beam (EB) gun assembly for an EB furnace is provided. The EB gun assembly includes an EB gun-frame assembly including a skeleton frame and at least one EB gun mounted to the skeleton frame, and the EB gun-frame assembly is configured to rigidly mount onto a first EB chamber lid and melt material in a first EB chamber and be removed and rigidly mount onto a second EB chamber lid and melt material in a second EB chamber. In some forms, the EB gun assembly includes at least one mounting frame and the at least one EB gun is mounted to the at least one mounting frame and the at least one mounting frame is mounted to the skeleton frame.
    Type: Application
    Filed: December 15, 2020
    Publication date: June 17, 2021
    Applicant: Titanium Metals Corporation
    Inventor: David M. MAY
  • Patent number: 10837093
    Abstract: An alpha-beta titanium alloy is provided. The alpha-beta titanium alloy composition includes concentrations of Al from about 4.7 wt. % to about 6.0 wt. %; V from about 6.5 wt. % to about 8.0 wt. %; Si from about 0.15 wt. % to about 0.6 wt. %; Fe up to about 0.3 wt. %; O from about 0.15 wt. % to about 0.23 wt. %; Ti and incidental impurities as a balance. The alpha-beta titanium alloy may have a solution treated and aged microstructure and an elongation of at least about 10% at room temperature. Also, the alpha-beta titanium alloy may have an Al/V ratio from about 0.65 to about 0.8, the Al/V ratio being equal to the concentration of the Al divided by the concentration of the V in weight percent.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: November 17, 2020
    Assignee: TITANIUM METALS CORPORATION
    Inventors: Roger Owen Thomas, Paul Garratt, Matthew Thomas, Yoji Kosaka
  • Patent number: 10837085
    Abstract: A cold rollable beta titanium alloy is provided by the present disclosure that exhibits excellent tensile strength, and creep and oxidation resistance at elevated temperatures. In one form, the beta titanium alloy includes molybdenum between 13.0 wt. % to 20.0 wt. %, niobium between 2.0 wt. % to 4.0 wt. %, silicon between 0.1 wt. % to 0.4 wt. %, aluminum between 3.0 wt. % to 5.0 wt. %, zirconium greater than 0.0 wt. % and up to 3.0 wt. %, tin up to 5.0 wt. %, oxygen up to 0.25 wt. %, and a balance of titanium and incidental impurities. Additionally, the ranges for each element satisfies the conditions of: 6.0 wt. %?X wt. %?7.5 wt. %; and??(i) 3.5 wt. %?Y wt. %?5.15 wt. %, where??(ii) X wt. %=aluminum+tin/3+zirconium/6+10*(oxygen+nitrogen+carbon), and Y wt. %=aluminum+silicon*(zirconium+tin).
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: November 17, 2020
    Assignee: TITANIUM METALS CORPORATION
    Inventors: Phani Gudipati, Yoji Kosaka
  • Patent number: 10837092
    Abstract: A method of making an alpha-beta titanium alloy is provided. The method includes forming a melt and solidifying the melt to form an ingot. The melt composition includes concentrations of Al from about 4.7 wt. % to about 6.0 wt. %; V from about 6.5 wt. % to about 8.0 wt. %; Si at less than 1 wt. %; Fe at up to about 0.3 wt. %; 0 at less than 1 wt. %; and a balance of Ti and incidental impurities. Furthermore, the Al/V ratio in the melt is equal to the concentration of the Al divided by the concentration of the V in weight percent is from about 0.65 to about 0.8.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: November 17, 2020
    Assignee: TITANIUM METALS CORPORATION
    Inventors: Roger Owen Thomas, Paul Garratt, Matthew Thomas, Yoji Kosaka
  • Patent number: 10731240
    Abstract: An alpha-beta titanium alloy is provided. The alpha-beta titanium alloy composition includes concentrations of Al from about 4.7 wt. % to about 6.0 wt. %; V from about 6.5 wt. % to about 8.0 wt. %; Si from about 0.15 wt. % to about 0.6 wt. %; Fe up to about 0.3 wt. %; O from about 0.15 wt. % to about 0.23 wt. %; Ti and incidental impurities as a balance. The alpha-beta titanium alloy may have a solution treated and aged microstructure and an elongation of at least about 10% at room temperature. Also, the alpha-beta titanium alloy may have an Al/V ratio from about 0.65 to about 0.8, the Al/V ratio being equal to the concentration of the Al divided by the concentration of the V in weight percent.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: August 4, 2020
    Assignee: TITANIUM METALS CORPORATION
    Inventors: Roger Owen Thomas, Paul Garratt, Matthew Thomas, Yoji Kosaka
  • Publication number: 20200181749
    Abstract: Titanium alloys with an improved and unexpected combination of corrosion resistance, strength, ductility and toughness are provided. The titanium alloys contain molybdenum, nickel, zirconium, iron, and oxygen as alloying agents. Also the titanium alloys may be subjected to thermal treatments. The titanium alloys can include molybdenum between 3.0 to 4.5 wt. %, nickel between 0.1 to 1.0 wt. %, zirconium between 0.1 to 1.5 wt. %, iron between 0.05 to 0.3 wt. %, oxygen between 0.05 to 0.25 wt. %, and a balance of titanium and unavoidable impurities. The titanium alloys can have a yield strength between 550 to 750 MPa, a tensile strength between 700 to 900 MPa, an elongation to failure between 25 to 35%, a reduction in area between 55 to 70%, and a corrosion rate between 0.5 to 2.5 mils per year when exposed to 1 wt. % boiling hydrochloric acid per the ASTM G-31 test method.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Applicant: Titanium Metals Corporation
    Inventors: Roger Owen THOMAS, James S. GRAUMAN, Paul GARRATT, James G. MILLER
  • Patent number: 10633732
    Abstract: Titanium alloys formed into a part or component used in applications where a key design criterion is the energy absorbed during deformation of the part when exposed to impact, explosive blast, and/or other forms of shock loading is described. The titanium alloys generally comprise a titanium base with added amounts of aluminum, an isomorphous beta stabilizing element such as vanadium, a eutectoid beta stabilizing element such as silicon and iron, and incidental impurities. The titanium alloys exhibit up to 70% or more improvement in ductility and up to a 16% improvement in ballistic impact resistance over a Ti-6Al-4V alloy, as well as absorbing up to 50% more energy than the Ti-6Al-4V alloy in Charpy impact tests. A method of forming a part that incorporates the titanium alloys and uses a combination of recycled materials and new materials is also described.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: April 28, 2020
    Assignee: Titanium Metals Corporation
    Inventors: Roger Owen Thomas, Yoji Kosaka, Steven James, Paul Garratt
  • Publication number: 20200095665
    Abstract: A titanium alloy composition is provided. In weight percent (wt. %), the alloy includes 5.7 to 8.0% vanadium, 0.5 to 1.75% aluminum, 0.25 to 1.5% iron, 0.1 to 0.2% oxygen, up to 0.15% silicon, up to 0.1% carbon and less than 0.03% nitrogen is provided. In one form, the titanium alloy has a 0.2% yield strength between 600 to 850 MPa, an ultimate tensile strength between 700 to 950 MPa, a percent elongation to failure between 20 to 30%, a percent reduction in area between 40 to 80%, a Charpy U-notch impact energy between 30 to 70 J, and/or a Charpy V-notch impact energy between 40 to 150 J.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 26, 2020
    Applicant: Titanium Metals Corporation
    Inventors: Roger Owen THOMAS, Steven JAMES, Paul GARRATT, Matthew THOMAS
  • Publication number: 20190169712
    Abstract: A titanium alloy having high strength, fine grain size, and low cost and a method of manufacturing the same is disclosed. In particular, the titanium alloy offers a room temperature longitudinal low cycle fatigue (LCF) maximum stress of at least about 950 MPa over about 20,000 cycles and a room temperature transverse low cycle fatigue (LCF) maximum stress of at least about 970 MPa over about 25,000 cycles. The titanium alloy is particularly useful for a multitude of applications including components of aircraft engines. The titanium alloy comprises, in weight percent, about 6.0 to about 6.7% aluminum, about 1.4 to about 2.0% vanadium, about 1.4 to about 2.0% molybdenum, about 0.20 to about 0.42% silicon, about 0.17 to about 0.23% oxygen, maximum about 0.24% iron, maximum about 0.08% carbon and balance titanium with incidental impurities.
    Type: Application
    Filed: November 6, 2018
    Publication date: June 6, 2019
    Applicant: Titanium Metals Corporation
    Inventors: Roger Owen THOMAS, Paul GARRATT, John FANNING
  • Publication number: 20190169713
    Abstract: A method of manufacturing a titanium alloy part with a composition, in weight %, of aluminum from about 6.0 to about 6.7; vanadium from about 1.4 to about 2.0; molybdenum from about 1.4 to about 2.0; silicon from about 0.20 to about 0.35; oxygen from about 0.18 to about 0.23; iron from about 0.16 to about 0.24; carbon from about 0.02 to about 0.06; and balance titanium, is provided. The method includes a first heat treatment on an ingot of the titanium alloy, forging of the ingot to break down the cast structure, a second heat treatment on the forged ingot, rolling the forged ingot to a plate, bar or billet, and annealing the plate, bar or billet below the beta transus temperature of the titanium alloy. The first and second heat treatments are between 40 and 200° C. and between 30 and 100° C. below the beat transus temperature, respectively.
    Type: Application
    Filed: November 6, 2018
    Publication date: June 6, 2019
    Applicant: Titanium Metals Corporation
    Inventors: Roger Owen THOMAS, Paul GARRATT, John FANNING
  • Publication number: 20190112688
    Abstract: A vacuum arc remelting system for forming an ingot from an electrode is provided that includes a crucible assembly configured to accommodate the electrode and the ingot, an electromagnetic energy source arranged about the crucible assembly, and a lift mechanism operable to move the electromagnetic energy source along a longitudinal axis of the crucible assembly. A magnetic field generated by the electromagnetic energy source is localized to an arc region during remelting, and in one form, the electromagnetic energy source is a coil assembly having a magnetic core and a plurality of coil pairs wrapped around the core, wherein the coil assembly is operable to generate a magnetic field from the coil based on electric current flowing in the plurality of coil pairs.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 18, 2019
    Applicant: Titanium Metals Corporation
    Inventors: Ashish D. PATEL, Jeremy L. SENSENIG, Robert James MCFARLAND, JR., James Leroy PHILLIPS
  • Publication number: 20190015882
    Abstract: A device for reforming a vessel cavity is provided that includes a central shaft, a central gear coupled to the central shaft, and a plurality of roller gears coupled to the central gear, with each of the plurality of roller gears having a central portion. A proximal support member couples the plurality of roller gears and at least one of the central gear and the central shaft. A plurality of rollers is also provided, each of the plurality of rollers connected to the central portion of each of the plurality of roller gears. In one form, at least one idler member is disposed between the plurality of rollers. A distal support member couples the plurality of rollers and at least one of the central gear and a translation member. Also, a stationary member is secured to a distal portion of the vessel cavity.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 17, 2019
    Applicant: Titanium Metals Corporation
    Inventors: Greg JOHNSON, Kaveh GOLESTANEH