Abstract: A solid catalyst component for olefin polymerization containing magnesium, titanium, a halogen, a carbonate compound (A) represented by the following general formula (1): R1—O—C(?O)—O—Z—O—R2 (1), and an ether compound (B) having two or more ether groups, wherein a proportion of the ether compound (B) in a total of the carbonate compound (A) and the ether compound (B) is 33.0 to 80.0 mol %. The invention can provide a solid catalyst component for olefin polymerization using an ether compound having two or more ether groups and a carbonate compound as internal electron donating compounds, wherein the solid catalyst component for olefin polymerization has, in the polymerization of olefins, a moderately wide molecular weight distribution of an olefin polymer obtained therefrom and can increase the polymerization activity.
Abstract: A solid catalyst component for polymerization of an olefin is disclosed including: magnesium, titanium, halogen, and a succinic acid diester compound, wherein a content of the succinic acid diester compound in a total content of the components in terms of the solid content is 15.0% by mass or more, a ratio (S/T), represented by a content of the succinic acid diester compound(S) in the total content of the components to a content of the titanium (T) in the total content of the components, is 0.60 to 1.30 in a molar ratio, and a total pore volume of a diameter of 1 ?m or less as measured by a mercury intrusion method is 0.3 to 1.0 cm3/g, and a specific surface area is 200 m2/g or more.
Abstract: A method for producing a metallic green compact 61 relates to a method for producing the green compact 61 having at least one recess 62, including a step of subjecting a raw material powder filled in a resin mold 1 to cold isostatic pressing while placing a resin core material 11 having a shape corresponding to the recess 62 at a position corresponding to the recess 62 in the resin mold 1.
Abstract: A method for manufacturing a porous metal body according to the present invention includes: a surface oxidizing step of heating a titanium-containing powder in an atmosphere containing oxygen at a temperature of 250° C. or more for 30 minutes or more to provide a surface-oxidized powder; and a sintering step of depositing the surface-oxidized powder in a dry process, and sintering the surface-oxidized powder by heating it in a reduced pressure atmosphere or an inert atmosphere at a temperature of 950° C. or more.
Abstract: Provided is a solid catalyst component for olefin polymerization which is capable of exerting favorable ethylene responsiveness while forming a propylene homopolymer having high stereoregularity, when subjected to ethylene-propylene copolymerization reaction. The present invention provides a solid catalyst component for olefin polymerization, comprising titanium, magnesium, halogen, and an internal electron-donating compound, wherein the internal electron-donating compound comprises an electron-donating compound (i) having a phthalic acid ester structure, and an electron-donating compound (ii) having two or more kinds of groups selected from an ether group, an ester group and a carbonate group and having no phthalic acid ester structure, wherein a content ratio of the electron-donating compound (ii) having two or more kinds of groups selected from an ether group, an ester group and a carbonate group and having no phthalic acid ester structure is 0.5 to 1.5% by mass.
Abstract: To provide a solid catalyst component for polymerization of an olefin, which can easily produce a polymer of an olefin, which is excellent in fluidity and also is high in rigidity even though the molecular weight distribution is narrow, without performing complicated polymerization treatment. A solid catalyst component for polymerization of an olefin includes magnesium, titanium and halogen, and further includes an aromatic carboxylic acid ester and a 1,3-diether compound as internal electron-donating compounds, wherein a content ratio of the titanium is 0.5 to 2.0% by mass, a content ratio of the aromatic carboxylic acid ester in a total content of the internal electron-donating compounds is 40 to 60 mol %, and a content ratio of the 1,3-diether compound in the total content of the internal electron-donating compounds is 40 to 60 mol %.
Abstract: The titanium-based porous body according to the present invention is in a form of a sheet and contains titanium, and the titanium-based porous body has a thickness of 0.8 mm or less, a porosity of 30% to 65%, a maximum height Rz1 of one sheet surface of 30 ?m or less, a ratio of a maximum height Rz2 of other sheet surface to the maximum height Rz1 of the one sheet surface (Rz2/Rz1) of 1.2 or more, and a compression deformation rate of 19% or less.
Abstract: Provided is a novel olefin polymer which is excellent in lightness and moldability, has high rigidity and yields molded products excellent in flexural elasticity. The olefin polymer includes a propylene initial polymerization product formed in the presence of an olefin polymerization catalyst which is a contact reaction product of an olefin polymerization solid catalyst component containing a titanium atom, a magnesium atom, a halogen atom and an internal electron donating compound, at least one organoaluminum compound selected from the compounds of the general formula (I), and a first external electron donating compound; and a polypropylene part formed of a propylene polymerization product formed in the presence of the olefin polymerization catalyst and a second external electron donating compound higher in adsorption to the surface of the olefin polymerization solid catalyst component than the first external electron donating compound.
Abstract: Provided is a solid catalyst component for olefin polymerization capable of suitably producing polymer particles with a suppressed content ratio of fine powder and reduced surface stickiness at high activity when subjected to polymerization of an olefin. The solid catalyst component for olefin polymerization contains magnesium, titanium, halogen and an internal electron-donating compound, in which a cross-sectional pore area ratio is 10 to 50%, and a ratio MXi/MXs of a cross-sectional pore area ratio (MXi) in a region of less than 50% in a radial direction to a cross-sectional pore area ratio (MXs) in a region of 50% or more in the radial direction from a particle center is 0.50 to 2.00.
Abstract: The present invention provides a method for producing a catalyst for polymerization of an olefin, which suppresses a decrease in polymerization activity due to early deactivation of the active site after the catalyst has been formed, exhibits excellent catalyst activity at the time of polymerization of olefins, and can produce polymers of olefins, which are excellent in stereoregularity. The method for producing a catalyst for polymerization of an olefin includes contacting a solid catalyst component (A) containing magnesium, titanium, halogen and an internal electron-donating compound, and a specific organoaluminum compound (B) represented by the general formula (I), with each other, wherein at least one selected from the solid catalyst component (A) and the organoaluminum compound (B) is previously subjected to contact treatment with a hydrocarbon compound having one or more vinyl groups.
Abstract: A method is disclosed for producing a catalyst, which suppresses a decrease in polymerization activity due to early deactivation of the active site after the catalyst has been formed, exhibits excellent catalyst activity at the time of polymerization of olefins, and can produce polymers of olefins, which are excellent in stereoregularity. The method for producing a catalyst includes contacting a solid catalyst component (A) containing magnesium, titanium, halogen and an internal electron-donating compound, and a specific organoaluminum compound (B) represented by the general formula (I), with each other, wherein at least one selected from the solid catalyst component (A) and the organoaluminum compound (B) is previously subjected to contact treatment with a hydrocarbon compound having one or more vinyl groups, in an organic solvent containing 30% by mass or more of one or more compounds selected from saturated aliphatic hydrocarbon compounds having 20 or more carbon atoms.
Abstract: Provided is a solid catalyst component for polymerization of an olefin which is capable of realizing stereoregularity and wide molecular weight distribution of the resulting polymer, copolymerization activity, and block ratio of the resulting copolymer in a well-balanced manner while satisfying these properties at a level sufficient for practical use despite containing an electron-donating compound other than a phthalic acid ester. The present invention provides a solid catalyst component for polymerization of an olefin, comprising: magnesium, titanium, halogen, an ether carbonate compound (A), and a succinic acid diester compound (B), wherein a molar ratio represented by the following expression is 0.01 to 1.00: content of the ether carbonate compound (A)/content of the succinic acid diester compound (B).
Abstract: The present invention provides a solid catalyst component for polymerization of an olefin, which appropriately suppresses a decrease in polymerization activity per unit time when having been supplied to the polymerization of the olefin, even without using a phthalic acid ester, and can easily prepare a polymer of an olefin, in which drying efficiency is improved, and a content ratio of a remaining volatile organic compound is greatly reduced in a short period of time. The solid catalyst component for polymerization of an olefin includes magnesium, titanium, halogen and a 1,3-diether compound, wherein a ratio of the 1,3-diether compound contained in the solid catalyst component for polymerization of an olefin is 2.50 to 15.00% by mass, and a specific surface area of the solid catalyst component for polymerization of an olefin is 250 m2/g or larger.
Abstract: A method for producing metal titanium by carrying out electrolysis using an anode and a cathode in a molten salt bath, the method using an anode containing metal titanium as the anode, the method comprising a titanium deposition step of depositing metal titanium on the cathode, wherein, in the titanium deposition step, a temperature of the molten salt bath is from 250° C. or more and 600° C. or less, and an average current density of the cathode in a period from the start to 30 minutes later of the titanium deposition step is maintained in a range of 0.01 A/cm2 to 0.09 A/cm2.
Abstract: Provided is an alkali metal titanate which, when used as a constituent material of a friction material, is excellent in heat resistance and friction force and capable of effectively suppressing wear of a mating material disposed to face the friction material. The alkali metal titanate includes a sodium atom and a silicon atom. The content of the sodium atom is 2.0 to 8.5 mass %. The content of the silicon atom is 0.2 to 2.5 mass %. The ratio of the content of an alkali metal atom other than the sodium atom to the content of the sodium atom is 0 to 6.
Abstract: A porous titanium-based sintered body, having a porosity of 45% to 65%, an average pore diameter of 5 ?m to 15 ?m, and a bending strength of 100 MPa or more. According to the present invention, a porous titanium-based sintered body having good pore diameter and porosity that are compatible with each other and having a high strength can be provided.
Abstract: Provided is a solid catalyst component for olefin polymerization which is capable of exerting favorable ethylene responsiveness while forming a propylene homopolymer having high stereoregularity, when subjected to ethylene-propylene copolymerization reaction. The present invention provides a solid catalyst component for olefin polymerization, comprising titanium, magnesium, halogen, and an internal electron-donating compound, wherein the internal electron-donating compound comprises an electron-donating compound (i) having a phthalic acid ester structure, and an electron-donating compound (ii) having two or more kinds of groups selected from an ether group, an ester group and a carbonate group and having no phthalic acid ester structure, wherein a content ratio of the electron-donating compound (ii) having two or more kinds of groups selected from an ether group, an ester group and a carbonate group and having no phthalic acid ester structure is 0.5 to 1.5% by mass.
Abstract: A manufacturing method of a gas diffusion layer with a microporous layer includes coating a gas diffusion layer containing titanium with a precursor containing an electroconductive material, a water-repellent resin, and a polyethylene oxide, and heating the gas diffusion layer coated with the precursor to form a microporous layer containing the electroconductive material and the water-repellent resin on a surface of the gas diffusion layer. The heating atmosphere is a non-oxidation atmosphere where an oxygen concentration is no more than 0.3% by volume.
Type:
Grant
Filed:
September 16, 2020
Date of Patent:
November 15, 2022
Assignees:
Toyota Jidosha Kabushiki Kaisha, Toho Titanium Co., Ltd.
Abstract: To provide a titanium-based porous body that has high void fraction to ensure gas permeability and water permeability for practical use as an electrode and a filter, has a large specific surface area to ensure conductivity and sufficient reaction sites with a reaction solution or a reaction gas, thus showing excellent reaction efficiency, and contains less contaminants because of no organic substance used. A titanium-based porous body having a specific void fraction and a high specific surface area is obtained by filling an irregular-shaped titanium powder having an average particle size of 10 to 50 ?m in a dry system without using any binder or the like into a thickness of 4.0×10?1 to 1.6 mm, and sintering the irregular-shaped titanium powder at 800 to 1100° C.
Abstract: An object of the present invention is to recover a minor metal and/or rare-earth metal. The present invention provides a method for recovering a minor metal and/or rare-earth metal from a post-chlorination residue in titanium smelting. The minor metal and/or rare-earth metal is one or more metal selected from the group consisting of Sc, V, Nb, Zr, Y, La, Ce, Pr, and Nd.