Patents Assigned to Toho Titanium Co., Ltd.
  • Publication number: 20160215406
    Abstract: Provided is a method for producing metal by molten salt electrolysis, by which the metal can be efficiently produced. A method for producing metal by using an apparatus for molten salt electrolysis having an electrolytic cell and an electrode pair, wherein the molten salt electrolysis in the electrolytic cell and heating of the molten salt by a Joule heat generation between a pair of electrodes for electrolysis are simultaneously performed; and wherein the apparatus for molten salt electrolysis has at least two sets of electrode pair, and at least one set of the electrode pairs is electrically opened.
    Type: Application
    Filed: May 22, 2015
    Publication date: July 28, 2016
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Takahiro YAMABE, Yuichi ONO, Koji AKIYAMA, Motoshige SATO, Bunji AKIMOTO
  • Patent number: 9315601
    Abstract: A solid catalyst component for olefin polymerization and a catalyst are disclosed that exhibit high catalytic activity when used for gas-phase polymerization, suppress rapid reactions in the initial stage of polymerization relative to the polymerization activity, and can produce a propylene polymer in high yield while maintaining high stereoregularity. The solid catalyst component for olefin polymerization includes magnesium, titanium, a halogen, and an internal electron donor, the solid catalyst component including an asymmetrical phthalic diester represented by the following general formula (1) in a molar ratio of 0.2 to 0.8 relative to the total content of the internal electron donor.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 19, 2016
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Kunihiko Tashino, Takashi Fujita, Toshiya Uozumi, Yuta Haga
  • Patent number: 9243081
    Abstract: A solid catalyst component for olefin polymerization includes titanium, magnesium, a halogen, and a compound represented by the following formula (1): R1O—C(?O)—O—Z—OR2, and an olefin polymerization catalyst includes the solid catalyst component, an organoaluminum compound, and an optional external electron donor compound. An olefin polymer that has a moderate molecular weight distribution while maintaining high stereoregularity can be produced by utilizing the solid catalyst component and the olefin polymerization catalyst.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: January 26, 2016
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Toshihiko Sugano, Toshiya Uozumi, Noriaki Nakamura
  • Publication number: 20160016812
    Abstract: A method for producing titanium tetrachloride is provided, in which valuable materials such as unreacted titanium-containing raw material, carbon raw material and chlorine can be recovered from solid recovered material generated in chlorinating process of titanium-containing raw material, and titanium-containing raw material can be efficiently used. The treatment method of titanium-containing raw material includes the steps: separating and removing impurities selectively from the titanium-containing raw material as chlorides so as to obtain high titanium-containing raw material, producing titanium tetrachloride using the high titanium-containing raw material, and performing separating process of impurities from solid recovered material byproduced in the production of titanium tetrachloride, together with selective chlorinating treatment of the titanium-containing raw material. Thus, the high titanium-containing raw material can be produced while recovering chlorine and impure oxides.
    Type: Application
    Filed: March 6, 2014
    Publication date: January 21, 2016
    Applicant: Toho Titanium Co., Ltd.
    Inventors: Matsuhide HORIKAWA, Eiichi FUKASAWA
  • Publication number: 20160009836
    Abstract: A method for producing a propylene-based block copolymer ensures excellent olefin polymerization activity and activity with respect to hydrogen (hydrogen response) during polymerization, and produces a propylene-based block copolymer that exhibits a high MFR, high stereoregularity, and excellent rigidity. The method includes copolymerizing propylene and an ?-olefin in the presence of a catalyst that includes (I) a solid catalyst component that includes titanium, magnesium, a halogen, and a compound represented by R1O—C(?O)—O—Z—OR2, and (II) a compound represented by R3pAlQ3-p, to obtain a propylene-based block copolymer.
    Type: Application
    Filed: February 5, 2014
    Publication date: January 14, 2016
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Toshihiko SUGANO, Motoki HOSAKA, Toshiya UOZUMI
  • Patent number: 9206265
    Abstract: An olefin polymer that is obtained using an olefin polymerization catalyst that includes a solid catalyst component for olefin polymerization that includes titanium, magnesium, a halogen, and an ester compound (A) represented by the following formula (1): R1R2C?C(COOR3)(COOR4), an organoaluminum compound, and an optional external electron donor compound, exhibits primary properties (e.g., molecular weight distribution and stereoregularity) similar to those of an olefin polymer obtained using a solid catalyst component that includes a phthalic ester as an electron donor.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 8, 2015
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Toshiya Uozumi, Shingo Yamada, Noriaki Nakamura, Koichiro Hisano, Motoki Hosaka, Toshihiko Sugano
  • Patent number: 9206273
    Abstract: A solid catalyst component for olefin polymerization includes titanium, magnesium, a halogen, a compound represented by (R1)kC6H4-k(COOR2)(COOR3), and a compound represented by R4O—C(?O)—O—Z—OR5. The solid catalyst component is a novel solid catalyst component for olefin polymerization that achieves excellent olefin polymerization activity and activity with respect to hydrogen during polymerization, and can produce an olefin polymer that exhibits a high MFR, high stereoregularity, and excellent rigidity.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: December 8, 2015
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Motoki Hosaka, Noriaki Nakamura, Toshihiko Sugano
  • Publication number: 20150240011
    Abstract: A method produces a novel solid catalyst component for olefin polymerization that achieves excellent olefin polymerization activity and activity with respect to hydrogen during polymerization, and can produce an olefin polymer that exhibits a high MFR, high stereoregularity, and excellent rigidity. The method includes a first step that brings a magnesium compound, a tetravalent titanium halide compound, and one or more first internal electron donor compounds into contact with each other to effect a reaction, followed by washing; a second step that brings one or more second internal electron donor compounds into contact with a product obtained by the first step to effect a reaction; and a third step that brings a tetravalent titanium halide compound and one or more third internal electron donor compounds into contact with a product obtained by the second step to effect a reaction.
    Type: Application
    Filed: February 13, 2014
    Publication date: August 27, 2015
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Motoki Hosaka, Noriaki Nakamura, Shingo Yamada, Toshihiko Sugano
  • Publication number: 20150240003
    Abstract: A solid catalyst component for olefin polymerization includes titanium, magnesium, a halogen, a compound represented by (R1)kC6H4-k(COOR2)(COOR3), and a compound represented by R4O—C(?O)—O—Z—OR5. The solid catalyst component is a novel solid catalyst component for olefin polymerization that achieves excellent olefin polymerization activity and activity with respect to hydrogen during polymerization, and can produce an olefin polymer that exhibits a high MFR, high stereoregularity, and excellent rigidity.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 27, 2015
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Motoki Hosaka, Noriaki Nakamura, Toshihiko Sugano
  • Publication number: 20150240002
    Abstract: A method for producing a solid catalyst component for olefin polymerization produces a novel solid catalyst component for olefin polymerization that achieves excellent olefin polymerization activity and activity with respect to hydrogen during polymerization, and can produce an olefin polymer that exhibits a high MFR, high stereoregularity, and excellent rigidity.
    Type: Application
    Filed: February 13, 2014
    Publication date: August 27, 2015
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Motoki Hosaka, Noriaki Nakamura, Shingo Yamada, Toshihiko Sugano
  • Publication number: 20150240001
    Abstract: A solid catalyst component for olefin polymerization makes it possible to polymerize an olefin with high polymerization activity when used for an olefin polymerization catalyst, and produce an olefin polymer having a low fine powder content, a low coarse powder content, and a low volatile organic compound (VOC) content in high yield. The solid catalyst component for olefin polymerization is produced by suspending (a) a dialkoxymagnesium, and (b) at least one alcohol selected from ethanol, n-propanol, n-butanol, isopropanol, isobutanol, and t-butanol, in an inert organic solvent so that the total amount of the alcohol is 0.5 to 1.5 parts by mass based on 100 parts by mass of the dialkoxymagnesium, to prepare a suspension, and bringing (c) an internal electron donor and (d) a titanium halide compound into contact with the suspension.
    Type: Application
    Filed: September 24, 2013
    Publication date: August 27, 2015
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Motoki Hosaka, Hidetoshi Umebayashi, Toshihiko Sugano
  • Publication number: 20150166693
    Abstract: A method for producing a solid catalyst component for olefin polymerization produces a novel solid catalyst component for olefin polymerization that achieves excellent olefin polymerization activity and activity with respect to hydrogen during polymerization, and can produce an olefin polymer that exhibits a high MFR, high stereoregularity, and excellent rigidity.
    Type: Application
    Filed: July 10, 2013
    Publication date: June 18, 2015
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Motoki Hosaka, Noriaki Nakamura, Toshihiko Sugano
  • Publication number: 20150099197
    Abstract: A lithium-lanthanum-titanium oxide sintered material has a lithium ion conductivity 3.0×10?4 Scm?1 or more at a measuring temperature of 27° C., the material is described by one of general formulas (1?a)LaxLi2-3xTiO3-aSrTiO3, (1?a)LaxLi2-3xTiO3-aLa0.5K0.5TiO3, LaxLi2-3xTi1-aMaO3-a, Srx-1.5aLaaLi1.5-2xTi0.5Ta0.5O3 (0.55?x?0.59, 0?a?0.2, M=at least one of Fe or Ga), amount of Al contained is 0.35 mass % or less as Al2O3, amount of Si contained is 0.1 mass % or less as SiO2, and average particle diameter is 18 ?m or more.
    Type: Application
    Filed: April 22, 2013
    Publication date: April 9, 2015
    Applicants: Toho Titanium Co., Ltd., NAKASHIMA SANGYO CO., LTD., THE GAKUSHUIN SCHOOL CORPORATION
    Inventors: Mamoru Nakashima, Yoshiyuki Inaguma, Mikio Nakashima
  • Publication number: 20140343237
    Abstract: A solid catalyst component for olefin polymerization includes titanium, magnesium, a halogen, and a compound represented by the following formula (1): R1O—C(?O)—O—Z—OR2, and an olefin polymerization catalyst includes the solid catalyst component, an organoaluminum compound, and an optional external electron donor compound. An olefin polymer that has a moderate molecular weight distribution while maintaining high stereoregularity can be produced by utilizing the solid catalyst component and the olefin polymerization catalyst.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 20, 2014
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Toshihiko Sugano, Toshiya Uozumi, Noriaki Nakamura
  • Publication number: 20140221583
    Abstract: An olefin polymer that is obtained using an olefin polymerization catalyst that includes a solid catalyst component for olefin polymerization that includes titanium, magnesium, a halogen, and an ester compound (A) represented by the following formula (1): R1R2C?C(COOR3)(COOR4), an organoaluminum compound, and an optional external electron donor compound, exhibits primary properties (e.g., molecular weight distribution and stereoregularity) similar to those of an olefin polymer obtained using a solid catalyst component that includes a phthalic ester as an electron donor.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 7, 2014
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Toshiya Uozumi, Shingo Yamada, Noriaki Nakamura, Koichiro Hisano, Motoki Hosaka, Toshihiko Sugano
  • Publication number: 20140208816
    Abstract: For aging deformation of a reaction vessel used for production of titanium sponge by the Kroll method, the deformation of the reaction vessel can be corrected to a desired deformation. The apparatus for correcting the deformation corrects by being inserted inside of the cylindrical deformation of the reaction vessel, the apparatus has multiple cylinder arms radially extendable to a circumference, a deformation-correcting head arranged on a top part of the cylinder arm, a hydraulic power unit connected to the cylinder arm and driving the deformation-correcting head, a detecting means for the stroke of the deformation-correcting head, and a measuring means for the pressing force against the reaction vessel. Furthermore, the method for correcting the deformation of the reaction vessel using the apparatus has a step of pressing the reaction vessel while adjusting stroke of the deformation-correcting head depending on an amount of deformation of the reaction vessel.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 31, 2014
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Satoru NAKASHIMA, Tarou TOMITA, Atsushi SAKAGAMI
  • Publication number: 20140206827
    Abstract: A method for producing a solid catalyst component for olefin polymerization includes bringing a magnesium compound, a tetravalent titanium halide compound, and an electron donor compound represented by a general formula (1) into contact with each other, reacting the mixture, washing the resulting reaction product to obtain a solid component, bringing the solid component, a tetravalent titanium halide compound, and an electron donor compound represented by a general formula (2) into contact with each other, reacting the mixture, and washing the resulting reaction product. (R1)kC6H4-k(COOR2)(COOR3)??(1) R4R5C(COOR6)2??(2) A polymer that exhibits high activity with respect to hydrogen, high stereoregularity, and high bulk density can be obtained using a catalyst including a solid catalyst component obtained by the method.
    Type: Application
    Filed: August 3, 2012
    Publication date: July 24, 2014
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Toshiya Uozumi, Shingo Yamada
  • Publication number: 20140135205
    Abstract: A solid catalyst component for olefin polymerization and a catalyst are disclosed that exhibit high catalytic activity when used for gas-phase polymerization, suppress rapid reactions in the initial stage of polymerization relative to the polymerization activity, and can produce a propylene polymer in high yield while maintaining high stereoregularity. The solid catalyst component for olefin polymerization includes magnesium, titanium, a halogen, and an internal electron donor, the solid catalyst component including an asymmetrical phthalic diester represented by the following general formula (1) in a molar ratio of 0.2 to 0.8 relative to the total content of the internal electron donor.
    Type: Application
    Filed: May 31, 2012
    Publication date: May 15, 2014
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Kunihiko Tashino, Takashi Fujita, Toshiya Uozumi, Yuta Haga
  • Patent number: 8709178
    Abstract: The present invention provides a titanium material for hot rolling which enables reduction of defects on the surface (in the case of a flat material or strip coil, including not only the flat surfaces but also the side surfaces and edges) due to hot rolling. The titanium material for hot rolling has dimples imparted by cold plastic deformation whose mean value of the heights (Wc) of the undulation profile elements is 0.2 to 1.5 mm and mean value of the lengths (WSm) thereof is 3 to 15 mm. The invention also provides a method of producing the titanium material and a method of hot rolling the titanium material.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: April 29, 2014
    Assignees: Nippon Steel & Sumitomo Metal Corporation, Toho Titanium Co., Ltd.
    Inventors: Kazuhiro Takahashi, Tomonori Kunieda, Kenichi Mori, Hiroaki Otsuka, Hideki Fujii, Yoshimasa Miyazaki, Takashi Oda, Hisamune Tanaka, Osamu Tada, Norio Yamamoto
  • Patent number: 8658118
    Abstract: An object of the present invention is to provide more inexpensive high purity crystalline silicon which can satisfy not only a quality required to a raw material of silicon for a solar cell but also a part of a quality required to silicon for an up-to-date semiconductor and a production process for the same and provide high purity silicon tetrachloride used for production of high purity crystalline silicon and a production process for the same. The high purity crystalline silicon of the present invention has a boron content of 0.015 ppmw or less and a zinc content of 50 to 1000 ppbw. The production process for high purity crystalline silicon according to the present invention is characterized by that a silicon tetrachloride gas and a zinc gas are supplied to a vertical reactor to react them at 800 to 1200° C.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: February 25, 2014
    Assignees: JNC Corporation, JX Nippon Mining & Metals Corporation, Toho Titanium Co., ltd.
    Inventors: Satoshi Hayashida, Wataru Kato