Patents Assigned to Toyo Kohan Co., Ltd.
  • Patent number: 10526109
    Abstract: Provided is a container-use surface treated steel sheet which is manufactured without using chromium and exhibits excellent working adhesion with a coated organic resin, a method of manufacturing the container-use surface treated steel sheet, an organic resin coated surface treated steel sheet. The container-use surface treated steel sheet is a surface treated steel sheet where nickel plating is applied to at least one-side surface of surfaces of a steel sheet by coating, wherein nickel plating has a fine particle shape formed by fine particles which has particle density of 2 to 500 pieces/?m2 and having an average particle size of 0.05 to 0.7 ?m. The container-use surface treated steel sheet is also characterized in that a coating weight of the nickel plating of the container-use surface treated steel sheet is 0.1 to 12 g/m2, metal tin is contained in coating of the nickel plating, and an amount of metal tin is 0.05 to 0.1 g/m2.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: January 7, 2020
    Assignee: TOYO KOHAN CO., LTD.
    Inventors: Shinichi Taya, Hiroshi Doi, Etsuro Tsutsumi, Kota Sadaki, Masahiro Kai
  • Patent number: 10525670
    Abstract: An alloy plate coated material including a base material and an alloy plate layer which is formed on the base material to constitute an outermost layer and is formed from a M1-M2-M3 alloy. M1 is at least one element selected from Ni, Fe, Co, Cu, Zn and Sn. M2 is at least one element selected from Pd, Re, Pt, Rh, Ag and Ru. M3 is at least one element selected from P and B. The alloy plate layer has a molar ratio of M1 to M2 (M1/M2) of 0.005 to 0.5.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: January 7, 2020
    Assignee: TOYO KOHAN CO., LTD.
    Inventors: Nobuaki Mukai, Tomoyuki Tsuruda, Takahiro Yoshida
  • Publication number: 20190333535
    Abstract: Provided are a thin hard disk substrate that is scratch-resistant on the disk surface and wobbles less during rotation and a hard disk device including such a hard disk substrate. The hard disk substrate 1 includes an aluminum alloy substrate 2 having NiP plating films 3 on the surfaces. The aluminum alloy substrate 2 has the Vickers hardness of 60 Hv or more, the ratio between the thickness of the NiP plating films 3 and the thickness of the Al alloy substrate 2 is 3.8% or more, the Young's modulus of the hard disk substrate 1 is 74.6 GPa or more, and the Vickers hardness of the hard disk substrate 1 is 293 Hv or more.
    Type: Application
    Filed: December 28, 2017
    Publication date: October 31, 2019
    Applicant: Toyo Kohan Co., Ltd.
    Inventors: Ayaka Takimoto, Nobuaki Mukai
  • Patent number: 10450601
    Abstract: A buffer composition for hybridization of a target nucleic acid is provided. The nucleic acid can include a nucleotide to be detected with a nucleic acid probe. The probe can contain a nucleotide sequence complementary to the target nucleic acid. The buffer can include a blocking nucleic acid having a nucleotide sequence complementary to a non-target nucleic acid having a nucleotide not to be detected corresponding to the nucleotide to be detected. The buffer composition can suppress non-specific hybridization to the nucleic acid probe even when a non-target nucleic acid is present. The use of the buffer composition can achieve excellent detection efficiency of the target nucleic acid.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: October 22, 2019
    Assignees: Toyo Kohan Co., Ltd., Yamaguchi University
    Inventors: Shuichi Kamei, Mayuko Hosoya, Masaaki Oka, Shoichi Hazama, Ryouichi Tsunedomi
  • Patent number: 10441991
    Abstract: There is provided a method of manufacturing a cylindrical container using a metal sheet on at least one surface of which the metal is exposed. The method includes: obtaining a blank having a hexagonal shape from the metal sheet; and processing the blank into a cylindrical shape by pressing a central part of the blank with a punch in a state in which a peripheral part of the blank is clamped between a die for drawing process and a blank holder. The method is characterized by the following features. At least one of the die for drawing process and the blank holder has a groove-formed area at a portion of a surface thereof. The portion corresponds to a side of the blank. The groove-formed area is formed with a plurality of grooves along the circumferential direction.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: October 15, 2019
    Assignee: TOYO KOHAN CO., LTD
    Inventors: Yasuyuki Ikeda, Shinichi Taya, Kota Sadaki
  • Patent number: 10309028
    Abstract: Provided is a method for producing a surface-treated steel sheet including the step of forming a layer mainly composed of an oxygen compound containing Al onto a tin-plated steel sheet by conducting cathode electrolytic treatment to the tin-plated steel sheet using an electrolytic treatment solution containing Al ions and nitrate ions. For the electrolytic treatment solution, an electrolytic treatment solution not containing F ions and where the amount of nitrate ions contained is 11,500 to 25,000 ppm by weight is used.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: June 4, 2019
    Assignees: TOYO KOHAN CO., LTD., TOYO SEIKAN CO., LTD.
    Inventors: Kunihiro Yoshimura, Masanobu Matsubara, Marie Sasaki, Masahiko Matsukawa, Keisuke Yoshida, Wataru Kurokawa, Munemitsu Hirotsu, Mitsuhide Aihara
  • Publication number: 20190161791
    Abstract: In the case of using a blocking nucleic acid to prevent non-specific hybridization of a target nucleic acid with a nucleic acid probe, further excellent efficiency of detecting the target nucleic acid is achieved. A buffer composition used in hybridization of a target nucleic acid with a nucleic acid probe, wherein the buffer composition for hybridization contains a blocking nucleic acid comprising a nucleotide sequence complementary to a region comprising at least a non-detection target nucleotide in a non-target nucleic acid, in a concentration of one or more times higher than the concentration of a nucleic acid in a nucleic acid mixture consisting of the target nucleic acid and the non-target nucleic acid.
    Type: Application
    Filed: August 2, 2017
    Publication date: May 30, 2019
    Applicants: TOYO KOHAN CO., LTD., YAMAGUCHI UNIVERSITY
    Inventors: Toshiya TSUDA, Shuichi KAMEI, Mitsuyoshi OBA, Hirofumi YAMANO, Ryouichi TSUNEDOMI, Shoichi HAZAMA, Hiroaki NAGANO
  • Patent number: 10294568
    Abstract: There is provided a metal plate coated stainless material (100) which includes a stainless steel sheet (10) having formed thereon a passivation film (11) having a Cr/O value in the range of 0.05 to 0.2 and a Cr/Fe value in the range of 0.5 to 0.8 at the surface as measured by an Auger electron spectroscopy analysis and a metal plated layer (20) formed on the passivation film (11) of the stainless steel sheet (10), in which the metal plated layer (20) is a plated layer formed from any one metal selected from among Ag, Pd, Pt, Rh, Ru, Cu, Sn and Cr, or an alloy of these metals.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: May 21, 2019
    Assignee: TOYO KOHAN CO., LTD.
    Inventors: Nobuaki Mukai, Takahiro Yoshida
  • Patent number: 10287689
    Abstract: There is provided a method for producing a metal-plated stainless material, the method including performing an acid treatment of treating a stainless steel material with an acidic solution; performing an etching of treating the stainless steel material after the acid treatment with an etching treatment agent; and a modifying the surface of the stainless steel material after the etching into a state suitable for a metal plating process.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: May 14, 2019
    Assignee: TOYO KOHAN CO., LTD.
    Inventors: Takahiro Yoshida, Tomoyuki Tsuruda
  • Patent number: 10273565
    Abstract: Provided is a corrosion-resistant and wear-resistant member where a thermal-sprayed layer having corrosion resistance and wear resistance is formed on a surface of a metallic member which is brought into contact with a resin which generates a highly corrosive gas. Also provided is a thermal-spraying powder. The highly corrosion-resistant and wear-resistant member having a thermal-sprayed layer is one obtained by thermally spraying metallic powder on a metallic base material to form a thermal-sprayed layer on a surface of the metallic base material. The member is characterized in that the thermal-sprayed layer is a composite boride cermet of a tetragonal Mo2 (Ni,Cr) B2-type or a tetragonal Mo2 (Ni, Cr, V) B2-type. The powder for forming a thermal-sprayed layer is made of a composite boride cermet of a Mo2 (Ni, Cr) B2-type and comprises 4.0 to 6.5 mass % of boron, 39.0 to 64.0 mass % of molybdenum, and 7.5 to 20.0 mass % of chromium, a balance being 5 mass % or more of nickel and unavoidable elements.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: April 30, 2019
    Assignee: TOYO KOHAN CO., LTD.
    Inventors: Kengo Iwanaga, Yuji Yamazaki, Kourou Hirata
  • Patent number: 10259073
    Abstract: An object of the present invention is to provide a production method for efficiently producing a metal laminate having high bonding strength. A method for producing a metal laminate material comprising the steps of: sputter etching faces to be bonded of a stainless steel and an aluminum such that an oxide layer remains on each face; temporarily bonding the faces to be bonded of the stainless steel and the aluminum by roll pressure bonding; and thermally treating the temporarily bonded laminate material at a temperature lower than the recrystallization temperature of the stainless steel to thermally diffuse at least a metal element comprised in the stainless steel into the aluminum.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: April 16, 2019
    Assignee: Toyo Kohan Co., Ltd.
    Inventors: Kouji Nanbu, Teppei Kurokawa, Takashi Koshiro, Hironao Okayama
  • Patent number: 10174420
    Abstract: This invention provides a method for forming an oxide layer on a metal substrate, which enables manufacture of an oxide layer with improved crystal orientation in comparison with that of the outermost layer of a metal substrate. The method for forming an oxide layer on a metal substrate 20 via RF magnetron sputtering comprises a step of subjecting the crystal-oriented metal substrate 20 exhibiting a c-axis orientation of 99% on its outermost layer to RF magnetron sputtering while adjusting the angle ? formed by a perpendicular at a film formation position 20a on the metal substrate 20 and a line from the film formation position 20a to a point 10a at which the perpendicular magnetic flux density is zero on the target 10 located at the position nearest to the film formation position 20a to 15 degrees or less.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: January 8, 2019
    Assignee: Toyo Kohan Co., Ltd.
    Inventors: Yusuke Hashimoto, Teppei Kurokawa, Takashi Koshiro, Hironao Okayama, Tatsuoki Nagaishi, Kotaro Ohki, Genki Honda
  • Patent number: 10156021
    Abstract: A method of producing a surface-treated steel sheet is provided. The surface-treated steel sheet includes a layer that contains a metal oxide. The method is characterized by including: dipping a steel sheet for 0.1 to 10 seconds in a treatment liquid that contains at least fluoride ions and has a pH of 2 to 5; and electrically treating by flowing a direct current between the steel sheet and an electrode in a treatment liquid to form a layer that contains a metal oxide on a surface of the steel sheet. According to the present invention, there can be provided a method of producing a surface-treated steel sheet which can enhance the interfacial adhesion with an organic resin layer when the organic resin layer is formed on the metal oxide layer.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: December 18, 2018
    Assignee: TOYO KOHAN CO., LTD.
    Inventors: Kunihiro Yoshimura, Naomi Taguchi, Satoko Fukutomi
  • Patent number: 10115501
    Abstract: This invention provides a substrate for a superconducting wire used for manufacturing a superconducting wire with excellent superconductivity and a method for manufacturing the same. Such substrate for a superconducting wire has crystal orientation of metals on the outermost layer, such as a c-axis orientation rate of 99% or higher and a ?? of 6 degrees or less, and a percentage of an area in which the crystal orientation is deviated by 6 degrees or more from the (001) [100] per unit area is 6% or less.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: October 30, 2018
    Assignees: Toyo Kohan Co., Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Teppei Kurokawa, Takashi Koshiro, Hironao Okayama
  • Patent number: 10113238
    Abstract: There is provided a gold plate coated stainless material characterized by comprising: a stainless steel sheet formed with a passivation film having a surface of which a Cr/O value is within a range of 0.05 to 0.2 and a Cr/Fe value is within a range of 0.5 to 0.8 when measured by Auger electron spectroscopy analysis; and a gold plated layer formed on the passivation film of the stainless steel sheet. According to the present invention, there can be provided a gold plate coated stainless material which can be improved in the coverage and interfacial adhesion property of the gold plated layer formed on the stainless steel sheet even when reducing the thickness of the gold plated layer, thereby to be excellent in corrosion resistance and conductivity and advantageous in cost.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: October 30, 2018
    Assignee: TOYO KOHAN CO., LTD.
    Inventors: Nobuaki Mukai, Takahiro Yoshida
  • Publication number: 20180297327
    Abstract: It is an object to provide a method for producing a substrate for epitaxial growth having a higher degree of biaxial crystal orientation without forming an irregular part a3. The method for producing a substrate for epitaxial growth comprising a step of laminating a metal base material and a copper layer having an fcc rolling texture by surface-activated bonding, a step of applying mechanical polishing to the copper layer, and a step of carrying out orientation heat treatment of the copper layer, wherein the copper layer is laminated in such a way that, when ratios of the (200) plane of the copper layer before laminated and of the copper layer after laminated when measured by XRD are I0Cu and I0CLAD, respectively and ratios of the (220) plane of the copper layer before laminated and of the copper layer after laminated are I2Cu and I2CLAD, respectively, I0Cu<20%, I2Cu=70 to 90%, and I0CLAD<20%, I2CLAD=70 to 90% and I0CLAD?I0Cu<13%.
    Type: Application
    Filed: October 21, 2016
    Publication date: October 18, 2018
    Applicants: Toyo Kohan Co., Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Teppei Kurokawa, Yusuke Hashimoto, Hironao Okayama
  • Publication number: 20180281103
    Abstract: It is an objective of the present invention to provide a metal laminate material, which has sufficient strength as well as molding processability, lightweight properties, and radiation performance, which is a metal laminate material that has a two-layer structure of a stainless steel layer and an aluminum layer or a three-layer structure of a 1st stainless steel layer, an aluminum layer, and a 2nd stainless steel layer, wherein tensile strength TS is 200?TS?550 (MPa), elongation EL is not less than 15%, and a surface hardness Hv of the stainless steel layer is not more than 300 for the metal laminate material.
    Type: Application
    Filed: September 30, 2016
    Publication date: October 4, 2018
    Applicant: Toyo Kohan Co., Ltd.
    Inventors: Kouji Nanbu, Teppei Kurokawa, Takashi Koshiro, Hironao Okayama
  • Patent number: 10087528
    Abstract: There is provided a palladium plate coated material (100) comprising: a base material (10); an underlying alloy layer (20) formed on the base material (10); and a palladium plated layer (30) formed on the underlying alloy layer (20). The palladium plate coated material (100) is characterized in that the underlying alloy layer (20) is formed of an M1-M2-M3 alloy (where M1 is at least one element selected from Ni, Fe, Co, Cu, Zn and Sn, M2 is at least one element selected from Pd, Re, Pt, Rh, Ag and Ru, and M3 is at least one element selected from P and B).
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: October 2, 2018
    Assignee: TOYO KOHAN CO., LTD.
    Inventor: Nobuaki Mukai
  • Patent number: 10087552
    Abstract: An objective of the present invention is to provide a copper substrate for epitaxial growth, which has higher biaxial crystal orientation, and a method for manufacturing the same. The substrate for epitaxial growth of the present invention contains a biaxially crystal-oriented copper layer, wherein the full width at half maximum ?? of a peak based on the pole figure of the copper layer is within 5° and the tail width ?? of the peak based on the pole figure is within 15° Such a substrate for epitaxial growth is manufactured by a 1st step of performing heat treatment of a copper layer so that ?? is within 6° and the tail width ?? is within 25°, and after the 1st step, a 2nd step of performing heat treatment of the copper layer at a temperature higher than the temperature for heat treatment in the 1st step, so that ?? is within 5° and the tail width ?? is within 15°.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: October 2, 2018
    Assignees: Toyo Kohan Co., Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Koshiro, Hironao Okayama, Teppei Kurokawa, Kouji Nanbu
  • Patent number: 10086586
    Abstract: Provided is a composite Al material for a drawn and ironed can from which a drawn and ironed can having brightness can be formed. In a resin coated metal plate used for forming a drawn and ironed can, a first resin layer (20) having a thickness of 0.02 to 2 ?m is formed on a surface of an Al plate 10 which forms an outer surface of the can, and a second resin layer 30 having a thickness of 1 to 40 ?m is formed on a surface of the Al plate 10 which forms an inner surface of the can. In a penetration test using a TMA device, an insertion amount of a quartz pin when a load of 5 g is applied to the first resin layer at a temperature of 100° C. is 20% or less of a film thickness of the first resin layer. Further, the first resin layer has a room temperature of 10 N/mm2 or more.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: October 2, 2018
    Assignee: TOYO KOHAN CO., LTD.
    Inventors: Takaaki Okamura, Hiroaki Togo, Takashi Sugimura