Patents Assigned to Toyo Kohan Co., Ltd.
  • Patent number: 9017757
    Abstract: A method of manufacturing a hydrogen separation membrane with a carrier is characterized by including a first step of providing, between the hydrogen separation membrane and the carrier that supports the hydrogen separation membrane, a low-hardness metal membrane having a hardness that is lower than the hardness of the hydrogen separation membrane, and a second step of joining the hydrogen separation membrane, the low-hardness metal membrane, and the carrier by a cold joining method. In this case, it is possible to suppress the deformation of the hydrogen separation membrane, the low-hardness metal membrane, and the carrier and, as a result, it is possible to prevent damaging of the hydrogen separation membrane. The adhesion of the contact between the hydrogen separation membrane and the carrier is also improved. The result is that it is not necessary to increase the severity of the cold joining conditions.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: April 28, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Kohan Co., Ltd.
    Inventors: Satoshi Aoyama, Yasuhiro Izawa, Kenji Kimura, Shinji Ohsawa, Kazuo Yoshida, Kouji Nanbu
  • Publication number: 20150111057
    Abstract: Provided is a container-use surface treated steel sheet which is manufactured without using chromium and exhibits excellent working adhesion with a coated organic resin, a method of manufacturing the container-use surface treated steel sheet, an organic resin coated surface treated steel sheet. The container-use surface treated steel sheet is a surface treated steel sheet where nickel plating is applied to at least one-side surface of surfaces of a steel sheet by coating, wherein nickel plating has a fine particle shape formed by fine particles which has particle density of 2 to 500 pieces/?m2 and having an average particle size of 0.05 to 0.7 ?m. The container-use surface treated steel sheet is also characterized in that a coating weight of the nickel plating of the container-use surface treated steel sheet is 0.1 to 12 g/m2, metal tin is contained in coating of the nickel plating, and an amount of metal tin is 0.05 to 0.1 g/m2.
    Type: Application
    Filed: May 24, 2013
    Publication date: April 23, 2015
    Applicant: TOYO KOHAN CO., LTD.
    Inventors: Shinichi Taya, Hiroshi Doi, Etsuro Tsutsumi, Kota Sadaki, Masahiro Kai
  • Publication number: 20150099143
    Abstract: Provided are a method for production of a hard disk substrate capable of obtaining a smooth surface of a plating film by electroless NiP plating that is not degraded in corrosion resistance against the acid solution and such a hard disk substrate.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 9, 2015
    Applicant: Toyo Kohan Co., Ltd.
    Inventor: NOBUAKI MUKAI
  • Patent number: 8993064
    Abstract: Provided are a substrate for a superconducting compound and a method for manufacturing the substrate which can realize the excellent adhesive strength simultaneously with high orientation of copper. An absorbed material on a surface of a copper foil to which rolling is applied at a draft of 90% or more is removed by applying sputter etching to the surface of the copper foil, sputter etching is applied to a nonmagnetic metal sheet, the copper foil and the metal sheet are bonded to each other by applying a pressure to the copper foil and the metal sheet using reduction rolls, crystals of the copper in the copper foil are oriented by heating a laminated body formed by such bonding, copper is diffused into the metal sheet by heating with a copper diffusion distance of 10 nm or more, and a protective layer is laminated to a surface of the copper foil of the laminated body.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: March 31, 2015
    Assignees: Toyo Kohan Co., Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Hironao Okayama, Kouji Nanbu, Akira Kaneko, Hajime Ota, Kotaro Ohki, Takashi Yamaguchi, Kazuhiko Hayashi, Kazuya Ohmatsu
  • Publication number: 20150064347
    Abstract: An object of the present invention is to obtain a hard disk substrate that can have a smooth surface of a plating film through electroless NiP plating and does not have deteriorated corrosion resistance against acid solutions. A method for producing a hard disk substrate of the present invention includes a first plating step of immersing a substrate in a first electroless NiP plating bath containing an additive with leveling action, thereby forming a lower layer of the electroless NiP plating film on a surface of the substrate, the lower layer having smaller average surface roughness than the surface; and a second plating step of immersing the substrate that has the lower layer of the electroless NiP plating film formed thereon through the first plating step in a second electroless NiP plating bath, thereby forming an upper layer of the electroless NiP plating film, the upper layer having corrosion resistance against acid solutions.
    Type: Application
    Filed: April 2, 2013
    Publication date: March 5, 2015
    Applicant: Toyo Kohan Co., Ltd.
    Inventors: Gen Ishida, Nobuaki Mukai, Takahiro Yoshida
  • Patent number: 8940419
    Abstract: Provided are a method for production of a hard disk substrate capable of obtaining a smooth surface of a plating film by electroless NiP plating that is not degraded in, but exhibits corrosion resistance against, an acid solution and such a hard disk substrate.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 27, 2015
    Assignee: Toyo Kohan Co., Ltd.
    Inventor: Nobuaki Mukai
  • Patent number: 8912126
    Abstract: A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: December 16, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Toyo Kohan Co., Ltd.
    Inventors: Takashi Yamaguchi, Masaya Konishi, Hajime Ota
  • Publication number: 20140332397
    Abstract: To provide a bath for surface treatment capable of forming a surface-treating film having excellent corrosion resistance by a high-speed electrolytic treatment, and a method of producing a surface-treated steel plate having excellent corrosion resistance and closely adhering property to the coating maintaining good productivity. A bath for surface treatment used for forming a surface-treating film on the surface of a steel plate by cathodic electrolysis, the bath for surface treatment containing Zr and/or Ti, and a polycarboxylic acid.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Applicants: TOYO SEIKAN GROUP HOLDINGS, LTD., TOYO KOHAN CO., LTD., NIPPON PAINT CO., LTD.
    Inventors: Wataru KUROKAWA, Seitaro KANAZAWA, Shinichi TAYA, Kunihiro YOSHIMURA, Naomi IIDA, Miwa IIDA, Masahiko MATSUKAWA
  • Patent number: 8865627
    Abstract: A method for manufacturing a superconducting wire includes the following steps. A laminate metal having a first metal layer and a Ni layer formed on the first metal layer is prepared. An intermediate layer (20) is formed on the Ni layer of the laminate metal. A superconducting layer (30) is formed on the intermediate layer (20). By subjecting the laminate metal to a heat treatment after at least either of the step of forming a intermediate layer (20) and the step of forming a superconducting layer (30), a nonmagnetic Ni alloy layer (12) is formed from the laminate metal.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: October 21, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Toyo Kohan Co., Ltd.
    Inventor: Hajime Ota
  • Publication number: 20140287928
    Abstract: A method for manufacturing a superconducting wire includes the following steps. A laminate metal having a first metal layer and a Ni layer formed on the first metal layer is prepared. An intermediate layer (20) is formed on the Ni layer of the laminate metal. A superconducting layer (30) is formed on the intermediate layer (20). By subjecting the laminate metal to a heat treatment after at least either of the step of forming a intermediate layer (20) and the step of forming a superconducting layer (30), a nonmagnetic Ni alloy layer (12) is formed from the laminate metal.
    Type: Application
    Filed: November 27, 2013
    Publication date: September 25, 2014
    Applicants: TOYO KOHAN CO., LTD., Sumitomo Electric Industries, Ltd.
    Inventor: Hajime Ota
  • Patent number: 8822037
    Abstract: A surface-treated steel plate obtained by forming, on at least one surface of the steel plate by cathodic electrolysis, a surface-treating film which contains a mixed oxide of an oxide of Fe and at least one of an oxide of Zr or an oxide of Ti, and a polycarboxylic acid, the amount of Zr or Ti, or the total amount of Zr and Ti if both of them are present, being from 3 to 300 mg/m2 and the amount of C being from 0.1 to 5.0 mg/m2.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: September 2, 2014
    Assignees: Toyo Seikan Group Holdings, Ltd., Toyo Kohan Co., Ltd.
    Inventors: Wataru Kurokawa, Seitaro Kanazawa, Shinichi Taya, Kunihiro Yoshimura, Naomi Iida, Miwa Iida, Masahiko Matsukawa
  • Patent number: 8815777
    Abstract: A metal laminated substrate for an oxide superconducting wire is produced by removing, in a state where a copper foil to which rolling is applied at a draft of 90% or more is held at a temperature below a recrystallization temperature, an absorbed material on a surface of the copper foil by applying sputter etching to the surface of the copper foil; removing an absorbed material on a surface of a nonmagnetic metal sheet by applying sputter etching to the surface of the nonmagnetic metal sheet; bonding the copper foil and the metal sheet to each other by reduction rolls at an applied pressure of 300 MPa to 1500 MPa; orienting crystals of the copper by heating a laminated body obtained by bonding at a crystal orientation temperature of copper or above; and forming a protective layer on a copper-side surface of the laminated body by coating.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: August 26, 2014
    Assignees: Toyo Kohan Co., Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Hironao Okayama, Teppei Kurokawa, Kouji Nanbu, Yoshihiko Isobe, Takashi Koshiro, Akira Kaneko, Hajime Ota, Kotaro Ohki, Takashi Yamaguchi, Kazuya Ohmastu
  • Publication number: 20140225288
    Abstract: A method for manufacturing a novel tilt alignment type optical compensation film formed using a non-liquid crystal polymer material, instead of a conventional tilt alignment type optical compensation film using a liquid crystal material. The method for manufacturing including: melting a non-liquid crystal polymer to prepare a molten resin; applying a shear force to the melted non-liquid crystal polymer by a shear force application device, thereby forming a film having an optical axis that tilts with respect to a thickness direction of the film; and stretching the film. The step of forming the film is carried out under conditions where a temperature T3 of the melted non-liquid crystal polymer, a glass transition point Tg of the non-liquid crystal polymer, and a temperature T2 of the shear force application device satisfy relationships represented by the following formulae (A) and (B): T3>Tg+25° C.; and??(A) T3>T2.
    Type: Application
    Filed: July 4, 2012
    Publication date: August 14, 2014
    Applicants: TOYO KOHAN CO., LTD., NITTO DENKO CORPORATION
    Inventors: Nobuyuki Haida, Hironori Yaginuma, Nao Murakami, Motoko Kawasaki, Kunihiro Seike, Keigo Ehara, Shogo Yamamoto
  • Patent number: 8795846
    Abstract: Provided is a Ni-plated steel sheet having excellent press formability. An Fe—Ni diffusion layer and a softened Ni layer formed on the Fe—Ni diffusion layer are formed on a surface of a steel sheet corresponding to an outer surface of a battery can, a semi-bright Ni plating layer is formed on the softened Ni layer, a Ni coating weight of the Fe—Ni diffusion layer and the softened Ni layer formed on the Fe—Ni diffusion layer is set smaller than a Ni coating weight of the semi-bright Ni plating layer, and average roughness Ra of the semi-bright Ni plating layer measured by a traceable roughness gauge is 1.0 ?m or more and 2.0 ?m or less, and a maximum height Ry of the semi-bright Ni plating layer measured by the traceable roughness gauge is 5 ?m or more and 20 ?m or less.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 5, 2014
    Assignee: Toyo Kohan Co., Ltd.
    Inventors: Hideyuki Minagi, Eiji Okamatsu
  • Patent number: 8778667
    Abstract: The present invention relates to a unit to be used for detection of interactions of biologically relevant molecules using a carrier on which the biologically relevant molecules are immobilized, comprising: a hollow holder having an open part at one end with the other end being closed; and a carrier-supporting member that can be inserted into the hollow holder, on which is mounted a carrier upon which biologically relevant molecules are immobilized, wherein: while the carrier-supporting member is being inserted into the hollow holder, a rear-end portion of the carrier-supporting member is engaged with an edge of the open part of the hollow holder, so that the hollow holder is sealed and the positions of the carrier-supporting member and the hollow holder are determined; and the area on the left and the area on the right of the axial center, which are defined by the inner side of the hollow holder and the external side of the carrier-supporting member on which the carrier has been mounted, are approximately th
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: July 15, 2014
    Assignee: Toyo Kohan Co., Ltd.
    Inventors: Hirofumi Yamano, Shuuichi Kamei, Michifumi Tanga
  • Publication number: 20140147734
    Abstract: A surface-treated steel sheet for battery cases is provided which comprises a nickel-cobalt alloy layer formed at the outermost surface of a plane to be an inner surface of a battery case. When X-ray diffraction measurement using CuK? as a radiation source is performed for the nickel-cobalt alloy layer, an intensity ratio IA/IB=0.01 to 0.9. The intensity ratio IA/IB is a ratio of an intensity IA of a peak present at a diffraction angle 2? within a range of 41° or more and less than 43° to an intensity IB of a peak present at a diffraction angle 2? within a range of 43° or more and 45° or less.
    Type: Application
    Filed: July 4, 2012
    Publication date: May 29, 2014
    Applicant: TOYO KOHAN CO., LTD.
    Inventors: Shinichirou Horie, Tatsuo Tomomori, Koh Yoshioka
  • Publication number: 20140147735
    Abstract: A surface treated steel sheet for a battery case, which has a diffusion layer of a nickel-phosphorus alloy or a nickel-cobalt-phosphorus alloy formed on the outermost layer of the inside surface of a plated steel sheet for a battery case; a battery case which is produced through forming the surface-treated steel sheet having a diffusion layer of a nickel-phosphorus alloy or a nickel-cobalt-phosphorus alloy by the deep drawing method, the DI forming or the DTR forming: and a battery using the battery case. The battery case can be used for producing a battery excellent in battery characteristics.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: Toyo Kohan Co., Ltd.
    Inventors: Hitoshi OHMURA, Tatsuo TOMOMORI, Yoshitaka HONDA
  • Patent number: 8734961
    Abstract: A Ni-plated steel sheet is provided in which the occurrence of scratches at the time of forming a battery can is suppressed. Also provided is a method which includes a step where a surface of a steel sheet is plated with Ni in a Ni adhesion amount of 0.3-2 ?m, a step where the Ni-plated steel sheet is heated to 600-800° C. to form an Fe?Ni diffusion layer as an outermost surface layer, and a step where the steel sheet is rolled by temper rolling so as to adjust the Fe?Ni diffusion layer so that the steel sheet has the surface roughness Ra of 0.9-2.0 ?m and the surface roughness Ry of 4.0-15 ?m. A Ni-plated steel sheet which includes an Fe?Ni diffusion layer as an outermost surface layer and in which the diffusion layer has the surface roughness Ra of 0.9-2.0 ?m and the surface roughness Ry of 4.0-15 ?m and the diffusion layer has such an Fe/Ni ratio that the Fe accounts for 20-50% in Auger analysis is subjected to drawing using a water-soluble liquid which contains water-soluble emersion as a press lubricant.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: May 27, 2014
    Assignee: Toyo Kohan Co., Ltd.
    Inventors: Shinichi Takematsu, Eiji Okamatsu, Hideyuki Minagi
  • Patent number: 8728371
    Abstract: A method of producing a stretched film comprising melt-coextruding a thermoplastic resin A and a thermoplastic resin B to produce a composite film 1 having both-end films 2 of the thermoplastic resin B arranged in parallel at both end portions of the main film 1a of the thermoplastic resin A in the direction of width thereof, stretching the composite film, and cutting and removing both end portions of the stretched film in the direction of width, wherein a film stretch stress value of the both-end films 2 is larger than a film stretch stress value of the main film 1a at the same stretching ratio. This minimizes an increase in the thickness at both end portions of the film in stretching the film and decreases the widths by which both end portions of the expensive resin film are to be cut and removed for producing a film.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: May 20, 2014
    Assignee: Toyo Kohan Co., Ltd.
    Inventors: Norimasa Maida, Yoshimi Itoh, Toshiyuki Ueda
  • Publication number: 20140050971
    Abstract: A surface-treated steel sheet for battery cases is provided which comprises a nickel-cobalt alloy layer formed at the outermost surface of a plane to be an inner surface of a battery case, wherein a Co/Ni value at the surface of the nickel-cobalt alloy layer is within a range of 0.1 to 1.
    Type: Application
    Filed: April 26, 2012
    Publication date: February 20, 2014
    Applicant: TOYO KOHAN CO., LTD.
    Inventors: Tatsuo Tomomori, Eiji Yamane, Shinichirou Horie, Koh Yoshioka