Patents Assigned to TRUSTEES OF PRINCETON
  • Patent number: 11726088
    Abstract: The present application provides a method of assaying pyruvate dehydrogenase complex (PDHC) activity in a mammalian cell that expresses human sirtuin 4 (SIRT4) comprising measuring a level of a dihydrolipoyllysine acetyltransferase (DLAT) lipoamide peptide comprising the amino acid sequence TDK[lipoyl]AT in the cell. The present application also demonstrates that sirtuin 4 (SIRT4) acts as a cellular lipoamidase that negatively regulates pyruvate dehydrogenase complex (PDHC) activity through hydrolysis of its lipoamide cofactors.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: August 15, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Thomas Shenk, Todd M. Greco, Ileana M. Cristea, Rommel A. Mathias, Adam Oberstein
  • Patent number: 11727717
    Abstract: When one looks at a face, one cannot help but ‘read’ it: in the blink of an eye, people form reliable impressions of both transient psychological states (e.g., happiness) and stable character traits (e.g., trustworthiness). Such impressions are irresistible, formed with high levels of consensus, and important for social decisions. Disclosed herein is a large-scale data-driven methodology that allows for the easy manipulation of social trait information in hyper-realistic face images. For example, a given face image could be made to look more or less trustworthy by moving a simple slider. Further, this method can not only generate faces, but can ‘read’ faces as well, providing confidence estimates of different social traits for any arbitrary image. The disclosed approach is both fast and accurate, and represents a paradigm shift in facial photo manipulation.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: August 15, 2023
    Assignees: THE TRUSTEES OF PRINCETON UNIVERSITY, THE TRUSTEES OF THE STEVENS INSTITUTE OF TECHNOLOGY
    Inventors: Alexander T. Todorov, Stefan D. Uddenberg, Joshua C. Peterson, Thomas L. Griffiths, Jordan W. Suchow
  • Publication number: 20230250200
    Abstract: The present disclosure relates to iron-containing compounds including a 2,6-diimino(heteroaryl) ligand useful for producing substituted-cyclo-alkanes, such as vinyl cyclobutanes. The present disclosure provides new and improved iron-containing catalysts with enhanced solubility in hydrophobic (nonpolar) solvents.
    Type: Application
    Filed: January 19, 2023
    Publication date: August 10, 2023
    Applicants: EXXONMOBIL CHEMICAL PATENTS INC., THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Irene C. Cai, Gursu Culcu, Tzu-Pin Lin, Jo Ann M. Canich, Frank N. Raushel, Alex E. Carpenter, Hua Zhou, Danielle G. Singleton, Paul J. Chirik, Megan Mohadjer Beromi, Carli Kovel
  • Patent number: 11714749
    Abstract: Various embodiments comprise systems, methods, architectures, mechanisms, apparatus, and improvements thereof for in-memory computing using charge-domain circuit operation to provide energy efficient, high speed, capacitor-based in-memory computing. Various embodiments contemplate controlling input signal presentation within in-memory computing structures/macros in accordance with predefined or dynamic switch selection criteria to reduce energy consumption associated with charging and/or discharging summing capacitors during reset and evaluation operating modes of multiplying bit-cells (M-BCs).
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: August 1, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Jinseok Lee, Naveen Verma
  • Publication number: 20230226536
    Abstract: A method for controllably making catalysts with at least one metallic surface state, that includes: a) identifying all the topological insulators in the ICSD, b) calculating the Real Space Invariants of the valence bands for all these topological insulators in order to c) identify in all these topological insulators the Wyckoff Positions where the irreducible Wannier Charge Centers (WCCs) are localized, and then d) selecting as potentially catalytic active compound a topological insulator in which the position of WCCs is not occupied by any atom; e) synthesizing a crystal of the selected potentially catalytic active compound either so that it is grown in a predefined crystallographic direction (characterized by its Miller indices (h,k,l)) which exposes the metallic surface state; or cutting the crystal in a predefined crystallographic direction (characterized by its Miller indices (h,k,l)), so that the metallic surface state is exposed when ( ( { ( h , k , l ) · ( x - X j , y -
    Type: Application
    Filed: June 10, 2020
    Publication date: July 20, 2023
    Applicants: MAX PLANCK GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN EV, THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Yuanfeng XU, Claudia FELSER, Guowei LI, Chenguang FU, Yan SUN, Bogdan Andrei BERNEVIG, Zhida SONG
  • Patent number: 11703366
    Abstract: A method is provided for measuring different flow properties of a fluid. The method includes (a) providing a nanowire, the resistance of the nanowire varying based on temperature changes of the nanowire that reflect values of the different flow properties of the fluid when the nanowire is operated in different modes of operation respectively, such that the nanowire measures different flow properties when operated in different modes of operation respectively, and (b) alternating the nanowire between different modes of operation, measuring different flow properties of the fluid during the different modes of operation, respectively, and using the measurements of one of the flow properties to correct the measurements of another flow property. Other applications are also described.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: July 18, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Gilad Arwatz, Marcus Hultmark
  • Patent number: 11693113
    Abstract: This disclosure provides a system and method for producing ultrasound images based on Full Waveform Inversion (FWI). The system captures acoustic/(an)elastic waves transmitted through and reflected and/or diffracted from a medium. The system performs an FWI process in a time domain in conjunction with an accurate wave propagation solver. The system produces 3D maps of physical parameters that control wave propagation, such as shear and compressional wavespeeds, mass density, attenuation, Poisson's ratio, bulk and shear moduli, impedance, and even the fourth-order elastic tensor containing up to 21 independent parameters, which are of significant diagnostic value, e.g., for medical imaging and non-destructive testing.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 4, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Etienne Bachmann, Jeroen Tromp, Gregory L. Davies, Daniel Steingart
  • Patent number: 11669446
    Abstract: Various embodiments comprise systems, methods, architectures, mechanisms or apparatus for providing programmable or pre-programmed in-memory computing operations.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: June 6, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Naveen Verma, Hossein Valavi, Hongyang Jia
  • Patent number: 11667949
    Abstract: The present disclosure relates, in general, to a fusion protein construct comprising RNase L and a split reporter system, and methods of using the reporter for detecting 2?-5? linked oligoadenylates (2-5A) and double stranded RNA in vivo.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: June 6, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Alexei Korennykh, Alisha Chitrakar, Jesse Donovan
  • Patent number: 11665951
    Abstract: Methods for forming a coating over a surface are disclosed. A method includes directing a first source of barrier film material toward a substrate in a first direction at an angle ? relative to the substrate, wherein ? is greater than about 0° and less than about 85°. Additionally, a method of depositing a barrier film over a substrate includes directing a plurality of N sources of barrier film material toward a substrate, each source being directed at an angle ?N relative to the substrate, wherein for each ?N, ? is greater than about 0° and less than about 180°. For at least a first of the ?N, ?N is greater than about 0° and less than about 85°, and for at least a second of the ?N, ?N is greater than about 95° and less than about 180°.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: May 30, 2023
    Assignees: UNIVERSAL DISPLAY CORPORATION, THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Prashant Mandlik, Ruiqing Ma, Sigurd Wagner, Bhadrinarayana Lalgudi Visweswaran
  • Patent number: 11629174
    Abstract: Disclosed is a high-throughput transcriptional assay format in Actinomycete bacteria, and Streptomyces spp. in particular, that leverages eGFP, inserted both at a neutral site and inside the biosynthetic cluster of interest, as a read-out for secondary metabolite synthesis. Using this approach, a silent gene cluster in Streptomyces albus J1074 was induced. The cytotoxins etoposide and ivermectin were revealed as potent inducers, allowing the isolation and structural characterization of nearly 20 novel small molecule products of the chosen cluster. One of these molecules is a novel antifungal, while several others inhibit a cysteine protease implicated in cancer. Studies addressing the mechanism of induction by the two elicitors led to the identification of a pathway-specific transcriptional repressor that silences the gene cluster under normal growth conditions.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: April 18, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Mohammad R. Seyedsayamdost, Fei Xu, Kyuho Moon, Behnam Nazari
  • Patent number: 11618798
    Abstract: This invention relates generally to the field of quasicrystalline strictures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: April 4, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Patent number: 11607510
    Abstract: The present invention an electronic inhaler for the delivery of pharmaceuticals through vaporization.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: March 21, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventor: Joshua Rabinowitz
  • Patent number: 11608996
    Abstract: A method and system for mass and heat exchange, where water is preferentially absorbed by a non-toxic, non-corrosive liquid desiccant after passing through a hydrophilic, non-porous membrane. Optionally, mixing stages are provided to reduce the surface concentration of water at the desiccant-membrane interface.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: March 21, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Forrest Meggers, Jovan Pantelic, Eric Teitelbaum
  • Patent number: 11583844
    Abstract: In one aspect, phosphine compounds comprising three adamantyl moieties (PAd3) and associated synthetic routes are described herein. Each adamantyl moiety may be the same or different. For example, each adamantyl moiety (Ad) attached to the phosphorus atom can be independently selected from the group consisting of adamantane, diamantane, triamantane and derivatives thereof. Transition metal complexes comprising PAd3 ligands are also provided for catalytic synthesis including catalytic cross-coupling reactions.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: February 21, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Brad P Carrow, Liye Chen
  • Patent number: 11573353
    Abstract: A system and method for performing novel wind forecasting that is particularly accurate for forecasting over short-term time periods, e.g., over the next 1-5 hours. Such wind forecasting is particularly advantageous in wind energy applications. The disclosed method is anchored in a robust physical model of the wind variability in the atmospheric boundary layer (ABL). The disclosed method approach leverages a physical framework based on the unsteady dynamics of earth's atmosphere, and drives forecasting as a function of previously-observed atmospheric condition data observed at the same location for which a wind forecast is desired.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: February 7, 2023
    Assignee: TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Elie Bou-Zeid, Mostafa Momen, Ken Hu, Danil Kerimi
  • Patent number: 11562411
    Abstract: Disclosed is a virtual rating device that associate online ratings with differential time costs by endowing the graphical user interface that solicited ratings from the users with “physics,” including an initial (default) slider position and friction. When ratings are associated with differential time cost, scores correlated more strongly with objective service quality. The differential time costs optimize information when proportional to the deviation from the median score. Correlations between subjective rating scores and objective service performance can be further improved by boosting time costs for reporting extreme scores. The disclosed device lowers the sample size (and therefore costs) required for obtaining reliable, averaged crowd estimates. The disclosed device improves information quality in online rating and feedback systems. By endowing a rating widget with virtual friction to increase the time cost for reporting extreme scores, one can obtain a more reliable crowd estimates of quality.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: January 24, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Dalton Conley, Ofer Tchernichovski
  • Patent number: 11554101
    Abstract: An “inverse” precipitation route to precipitate aqueous soluble species with copolymers as nanoparticles having a hydrophilic, polar core and a less polar shell is described.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: January 17, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Robert F. Pagels, Robert K. Prud'Homme
  • Patent number: 11521068
    Abstract: According to various embodiments, a method for generating one or more optimal neural network architectures is disclosed. The method includes providing an initial seed neural network architecture and utilizing sequential phases to synthesize the neural network until a desired neural network architecture is reached. The phases include a gradient-based growth phase and a magnitude-based pruning phase.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: December 6, 2022
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Xiaoliang Dai, Hongxu Yin, Niraj K. Jha
  • Patent number: 11514925
    Abstract: Operations of a method include receiving a request to enhance a new source audio. Responsive to the request, the new source audio is input into a prediction model that was previously trained. Training the prediction model includes providing a generative adversarial network including the prediction model and a discriminator. Training data is obtained including tuples of source audios and target audios, each tuple including a source audio and a corresponding target audio. During training, the prediction model generates predicted audios based on the source audios. Training further includes applying a loss function to the predicted audios and the target audios, where the loss function incorporates a combination of a spectrogram loss and an adversarial loss. The prediction model is updated to optimize that loss function. After training, based on the new source audio, the prediction model generates a new predicted audio as an enhanced version of the new source audio.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: November 29, 2022
    Assignees: ADOBE INC., THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Zeyu Jin, Jiaqi Su, Adam Finkelstein